ContraReg: Contrastive Learning of Multi-modality Unsupervised Deformable Image Registration

Establishing voxelwise semantic correspondence across distinct imaging modalities is a foundational yet formidable computer vision task. Current multi-modality registration techniques maximize hand-crafted inter-domain similarity functions, are limited in modeling nonlinear intensity-relationships a...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Dey, Neel, Schlemper, Jo, Seyed Sadegh Mohseni Salehi, Zhou, Bo, Gerig, Guido, Sofka, Michal
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 27.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Establishing voxelwise semantic correspondence across distinct imaging modalities is a foundational yet formidable computer vision task. Current multi-modality registration techniques maximize hand-crafted inter-domain similarity functions, are limited in modeling nonlinear intensity-relationships and deformations, and may require significant re-engineering or underperform on new tasks, datasets, and domain pairs. This work presents ContraReg, an unsupervised contrastive representation learning approach to multi-modality deformable registration. By projecting learned multi-scale local patch features onto a jointly learned inter-domain embedding space, ContraReg obtains representations useful for non-rigid multi-modality alignment. Experimentally, ContraReg achieves accurate and robust results with smooth and invertible deformations across a series of baselines and ablations on a neonatal T1-T2 brain MRI registration task with all methods validated over a wide range of deformation regularization strengths.
AbstractList Establishing voxelwise semantic correspondence across distinct imaging modalities is a foundational yet formidable computer vision task. Current multi-modality registration techniques maximize hand-crafted inter-domain similarity functions, are limited in modeling nonlinear intensity-relationships and deformations, and may require significant re-engineering or underperform on new tasks, datasets, and domain pairs. This work presents ContraReg, an unsupervised contrastive representation learning approach to multi-modality deformable registration. By projecting learned multi-scale local patch features onto a jointly learned inter-domain embedding space, ContraReg obtains representations useful for non-rigid multi-modality alignment. Experimentally, ContraReg achieves accurate and robust results with smooth and invertible deformations across a series of baselines and ablations on a neonatal T1-T2 brain MRI registration task with all methods validated over a wide range of deformation regularization strengths.
Author Seyed Sadegh Mohseni Salehi
Zhou, Bo
Sofka, Michal
Dey, Neel
Schlemper, Jo
Gerig, Guido
Author_xml – sequence: 1
  givenname: Neel
  surname: Dey
  fullname: Dey, Neel
– sequence: 2
  givenname: Jo
  surname: Schlemper
  fullname: Schlemper, Jo
– sequence: 3
  fullname: Seyed Sadegh Mohseni Salehi
– sequence: 4
  givenname: Bo
  surname: Zhou
  fullname: Zhou, Bo
– sequence: 5
  givenname: Guido
  surname: Gerig
  fullname: Gerig, Guido
– sequence: 6
  givenname: Michal
  surname: Sofka
  fullname: Sofka, Michal
BookMark eNqNjtEKgjAYhUcUZOU7DLoWdNMl3VpRUDdRd4Es_JXJ3GybQm_foB6gq3PgfHycBZoqrWCCAkJpEuUpIXMUWtvGcUzYhmQZDdCj0MoZfoVmi7_VOjECPgM3SqgG6xpfBulE1OmKS-He-K7s0IMZhYUK76DWpuNPCfjU8QawNwnrNU5otUKzmksL4S-XaH3Y34pj1Bv9GsC6stWDUX4qCcsTlvpnjP5HfQCBcUWu
ContentType Paper
Copyright 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_26816400063
IEDL.DBID 8FG
IngestDate Thu Oct 10 20:38:37 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_26816400063
OpenAccessLink https://www.proquest.com/docview/2681640006?pq-origsite=%requestingapplication%
PQID 2681640006
PQPubID 2050157
ParticipantIDs proquest_journals_2681640006
PublicationCentury 2000
PublicationDate 20220627
PublicationDateYYYYMMDD 2022-06-27
PublicationDate_xml – month: 06
  year: 2022
  text: 20220627
  day: 27
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.4121933
SecondaryResourceType preprint
Snippet Establishing voxelwise semantic correspondence across distinct imaging modalities is a foundational yet formidable computer vision task. Current multi-modality...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Ablation
Computer vision
Deformation
Domains
Formability
Image registration
Learning
Regularization
Representations
Title ContraReg: Contrastive Learning of Multi-modality Unsupervised Deformable Image Registration
URI https://www.proquest.com/docview/2681640006
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60i-DNJz5qCeg12E12k-BFUHetQkspFnoQymaT7cV2t5v26m83idt6EHpLCIQ8Jt98mUxmAO7sFVkLESksCqpxZHcZS6vpcahpoWimMind5-T-gPXG0fsknjQGN9O4VW4w0QO1KnNnI78nTFhm79D1sVpilzXKva42KTT2IQgJ506qRfq6tbEQxi1jpv9g1uuO9AiCYVbp-hj29OIEDrzLZW5O4dMFhqqzkZ49oN-icdCDmoinM1QWyH-PxfNSebaMxguzrtzhNlqhF-35pvzS6G1uUQHZnrZRcM_gNk0-nnt4M6RpIzRm-jdFeg4te_vXF4DCkOeyiLsZZUVk11JGPGZKEREr5ujbJbR39XS1u_kaDonz5-8yTHgbWqt6rW-sll3Jjl_KDgRPyWA4srX-d_IDFlCIzA
link.rule.ids 783,787,12779,21402,33387,33758,43614,43819
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90Rdybn-icGtDX4Nq0afFFUDc63coYG-xBKE2T7mVba7P9_yYxmw_C3gKBkI_L7353ubsAPCoTWUSRz3FUEIF9dcqYKU2PXUEKTjKeMaaTk4cJjaf-xyyYWYebtGGVW0w0QM3LXPvInzwaKWav0fWl-sb61yj9umq_0DgER5eqUlLtvHaT0XjnZfFoqDgz-Qe0Rnv0TsAZZZWoT-FArM7gyARd5vIcvnRpqDobi_kz-m1KDT7I1jydo7JAJkEWL0tu-DKaruSm0tdbCo7ehWGcbCFQf6lwAamRdnVwL-Ch1528xXg7pdSKjUz_FkkuoaHsf3EFyHXDnBVBJyO08NVuMj8MKOdeFHCqCdw1tPeN1NrffQ_H8WQ4SAf95PMGmp6O7u9Q7IVtaKzrjbhVOnfN7uzG_gBp_IpS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ContraReg%3A+Contrastive+Learning+of+Multi-modality+Unsupervised+Deformable+Image+Registration&rft.jtitle=arXiv.org&rft.au=Dey%2C+Neel&rft.au=Schlemper%2C+Jo&rft.au=Seyed+Sadegh+Mohseni+Salehi&rft.au=Zhou%2C+Bo&rft.date=2022-06-27&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422