ContraReg: Contrastive Learning of Multi-modality Unsupervised Deformable Image Registration
Establishing voxelwise semantic correspondence across distinct imaging modalities is a foundational yet formidable computer vision task. Current multi-modality registration techniques maximize hand-crafted inter-domain similarity functions, are limited in modeling nonlinear intensity-relationships a...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
27.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Establishing voxelwise semantic correspondence across distinct imaging modalities is a foundational yet formidable computer vision task. Current multi-modality registration techniques maximize hand-crafted inter-domain similarity functions, are limited in modeling nonlinear intensity-relationships and deformations, and may require significant re-engineering or underperform on new tasks, datasets, and domain pairs. This work presents ContraReg, an unsupervised contrastive representation learning approach to multi-modality deformable registration. By projecting learned multi-scale local patch features onto a jointly learned inter-domain embedding space, ContraReg obtains representations useful for non-rigid multi-modality alignment. Experimentally, ContraReg achieves accurate and robust results with smooth and invertible deformations across a series of baselines and ablations on a neonatal T1-T2 brain MRI registration task with all methods validated over a wide range of deformation regularization strengths. |
---|---|
AbstractList | Establishing voxelwise semantic correspondence across distinct imaging modalities is a foundational yet formidable computer vision task. Current multi-modality registration techniques maximize hand-crafted inter-domain similarity functions, are limited in modeling nonlinear intensity-relationships and deformations, and may require significant re-engineering or underperform on new tasks, datasets, and domain pairs. This work presents ContraReg, an unsupervised contrastive representation learning approach to multi-modality deformable registration. By projecting learned multi-scale local patch features onto a jointly learned inter-domain embedding space, ContraReg obtains representations useful for non-rigid multi-modality alignment. Experimentally, ContraReg achieves accurate and robust results with smooth and invertible deformations across a series of baselines and ablations on a neonatal T1-T2 brain MRI registration task with all methods validated over a wide range of deformation regularization strengths. |
Author | Seyed Sadegh Mohseni Salehi Zhou, Bo Sofka, Michal Dey, Neel Schlemper, Jo Gerig, Guido |
Author_xml | – sequence: 1 givenname: Neel surname: Dey fullname: Dey, Neel – sequence: 2 givenname: Jo surname: Schlemper fullname: Schlemper, Jo – sequence: 3 fullname: Seyed Sadegh Mohseni Salehi – sequence: 4 givenname: Bo surname: Zhou fullname: Zhou, Bo – sequence: 5 givenname: Guido surname: Gerig fullname: Gerig, Guido – sequence: 6 givenname: Michal surname: Sofka fullname: Sofka, Michal |
BookMark | eNqNjtEKgjAYhUcUZOU7DLoWdNMl3VpRUDdRd4Es_JXJ3GybQm_foB6gq3PgfHycBZoqrWCCAkJpEuUpIXMUWtvGcUzYhmQZDdCj0MoZfoVmi7_VOjECPgM3SqgG6xpfBulE1OmKS-He-K7s0IMZhYUK76DWpuNPCfjU8QawNwnrNU5otUKzmksL4S-XaH3Y34pj1Bv9GsC6stWDUX4qCcsTlvpnjP5HfQCBcUWu |
ContentType | Paper |
Copyright | 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Engineering Collection Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
ID | FETCH-proquest_journals_26816400063 |
IEDL.DBID | 8FG |
IngestDate | Thu Oct 10 20:38:37 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-proquest_journals_26816400063 |
OpenAccessLink | https://www.proquest.com/docview/2681640006?pq-origsite=%requestingapplication% |
PQID | 2681640006 |
PQPubID | 2050157 |
ParticipantIDs | proquest_journals_2681640006 |
PublicationCentury | 2000 |
PublicationDate | 20220627 |
PublicationDateYYYYMMDD | 2022-06-27 |
PublicationDate_xml | – month: 06 year: 2022 text: 20220627 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2022 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 3.4121933 |
SecondaryResourceType | preprint |
Snippet | Establishing voxelwise semantic correspondence across distinct imaging modalities is a foundational yet formidable computer vision task. Current multi-modality... |
SourceID | proquest |
SourceType | Aggregation Database |
SubjectTerms | Ablation Computer vision Deformation Domains Formability Image registration Learning Regularization Representations |
Title | ContraReg: Contrastive Learning of Multi-modality Unsupervised Deformable Image Registration |
URI | https://www.proquest.com/docview/2681640006 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60i-DNJz5qCeg12E12k-BFUHetQkspFnoQymaT7cV2t5v26m83idt6EHpLCIQ8Jt98mUxmAO7sFVkLESksCqpxZHcZS6vpcahpoWimMind5-T-gPXG0fsknjQGN9O4VW4w0QO1KnNnI78nTFhm79D1sVpilzXKva42KTT2IQgJ506qRfq6tbEQxi1jpv9g1uuO9AiCYVbp-hj29OIEDrzLZW5O4dMFhqqzkZ49oN-icdCDmoinM1QWyH-PxfNSebaMxguzrtzhNlqhF-35pvzS6G1uUQHZnrZRcM_gNk0-nnt4M6RpIzRm-jdFeg4te_vXF4DCkOeyiLsZZUVk11JGPGZKEREr5ujbJbR39XS1u_kaDonz5-8yTHgbWqt6rW-sll3Jjl_KDgRPyWA4srX-d_IDFlCIzA |
link.rule.ids | 783,787,12779,21402,33387,33758,43614,43819 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90Rdybn-icGtDX4Nq0afFFUDc63coYG-xBKE2T7mVba7P9_yYxmw_C3gKBkI_L7353ubsAPCoTWUSRz3FUEIF9dcqYKU2PXUEKTjKeMaaTk4cJjaf-xyyYWYebtGGVW0w0QM3LXPvInzwaKWav0fWl-sb61yj9umq_0DgER5eqUlLtvHaT0XjnZfFoqDgz-Qe0Rnv0TsAZZZWoT-FArM7gyARd5vIcvnRpqDobi_kz-m1KDT7I1jydo7JAJkEWL0tu-DKaruSm0tdbCo7ehWGcbCFQf6lwAamRdnVwL-Ch1528xXg7pdSKjUz_FkkuoaHsf3EFyHXDnBVBJyO08NVuMj8MKOdeFHCqCdw1tPeN1NrffQ_H8WQ4SAf95PMGmp6O7u9Q7IVtaKzrjbhVOnfN7uzG_gBp_IpS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ContraReg%3A+Contrastive+Learning+of+Multi-modality+Unsupervised+Deformable+Image+Registration&rft.jtitle=arXiv.org&rft.au=Dey%2C+Neel&rft.au=Schlemper%2C+Jo&rft.au=Seyed+Sadegh+Mohseni+Salehi&rft.au=Zhou%2C+Bo&rft.date=2022-06-27&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422 |