Collaborative Drug Discovery: Inference-level Data Protection Perspective

Pharmaceutical industry can better leverage its data assets to virtualize drug discovery through a collaborative machine learning platform. On the other hand, there are non-negligible risks stemming from the unintended leakage of participants' training data, hence, it is essential for such a pl...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Pejo, Balazs, Remeli, Mina, Arany, Adam, Galtier, Mathieu, Acs, Gergely
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 09.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pharmaceutical industry can better leverage its data assets to virtualize drug discovery through a collaborative machine learning platform. On the other hand, there are non-negligible risks stemming from the unintended leakage of participants' training data, hence, it is essential for such a platform to be secure and privacy-preserving. This paper describes a privacy risk assessment for collaborative modeling in the preclinical phase of drug discovery to accelerate the selection of promising drug candidates. After a short taxonomy of state-of-the-art inference attacks we adopt and customize several to the underlying scenario. Finally we describe and experiments with a handful of relevant privacy protection techniques to mitigate such attacks.
AbstractList Pharmaceutical industry can better leverage its data assets to virtualize drug discovery through a collaborative machine learning platform. On the other hand, there are non-negligible risks stemming from the unintended leakage of participants' training data, hence, it is essential for such a platform to be secure and privacy-preserving. This paper describes a privacy risk assessment for collaborative modeling in the preclinical phase of drug discovery to accelerate the selection of promising drug candidates. After a short taxonomy of state-of-the-art inference attacks we adopt and customize several to the underlying scenario. Finally we describe and experiments with a handful of relevant privacy protection techniques to mitigate such attacks.
Author Arany, Adam
Acs, Gergely
Remeli, Mina
Pejo, Balazs
Galtier, Mathieu
Author_xml – sequence: 1
  givenname: Balazs
  surname: Pejo
  fullname: Pejo, Balazs
– sequence: 2
  givenname: Mina
  surname: Remeli
  fullname: Remeli, Mina
– sequence: 3
  givenname: Adam
  surname: Arany
  fullname: Arany, Adam
– sequence: 4
  givenname: Mathieu
  surname: Galtier
  fullname: Galtier, Mathieu
– sequence: 5
  givenname: Gergely
  surname: Acs
  fullname: Acs, Gergely
BookMark eNqNiksKwjAUAIMoWLV3CLgutEk_6rZV7K4L9yWWV2kJefUlDXh7FTyAqxmY2bClQQMLFggpk-iQCrFmobVjHMciL0SWyYDVJWqt7kjKDR54RfODV4Pt0AO9Trw2PRCYDiINHjSvlFO8IXTQuQENb4Ds9HUPO7bqlbYQ_rhl-8v5Vl6jifA5g3XtiDOZT2pFnqfHLEmLWP53vQH_Dj5u
ContentType Paper
Copyright 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Engineering Collection
ProQuest Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_26649514703
IEDL.DBID 8FG
IngestDate Thu Oct 10 17:49:46 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_26649514703
OpenAccessLink https://www.proquest.com/docview/2664951470?pq-origsite=%requestingapplication%
PQID 2664951470
PQPubID 2050157
ParticipantIDs proquest_journals_2664951470
PublicationCentury 2000
PublicationDate 20220609
PublicationDateYYYYMMDD 2022-06-09
PublicationDate_xml – month: 06
  year: 2022
  text: 20220609
  day: 09
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.4045641
SecondaryResourceType preprint
Snippet Pharmaceutical industry can better leverage its data assets to virtualize drug discovery through a collaborative machine learning platform. On the other hand,...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Collaboration
Inference
Machine learning
Privacy
Risk assessment
Taxonomy
Title Collaborative Drug Discovery: Inference-level Data Protection Perspective
URI https://www.proquest.com/docview/2664951470
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQAWaZxGQDCxNdwzTzRGAHxSRFNwlY8wBZKSZmSeaGKZapoM3Jvn5mHqEmXhGmEdABt2LoskpYmQguqFPyk0Fj5PrAigTYljc0MTewLyjUBd0aBZpdhV6hwczAamhkbg7qfFm4ucPHWIzMzIEtZmOMYhZcd7gJMrAGJBakFgkxMKXmCTOwg5dcJheLMHg6I6KgLFXBpag0XcElszgZtKay0krBE7YTTzcHtK5HwSWxJFEhAHKqAjAsFQIQuyRFGZTdXEOcPXRh9sdDU0hxPMI_xmIMLMCufqoEgwKw_jY2tkw2MbRITDQxsEi0NEk1SjO2NEg0tzBOTTM0lWSQwWeSFH5paQYuI9DifdAYgqUMA0tJUWmqLLBKLUmSA4ebHAOrk6tfQBCQ51vnCgCp4oGf
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQAWaZxGQDCxNdwzTzRGAHxSRFNwlY8wBZKSZmSeaGKZapoM3Jvn5mHqEmXhGmEdABt2LoskpYmQguqFPyk0Fj5PrAigTYljc0MTewLyjUBd0aBZpdhV6hwczAamIMrKtBO8Xd3OFjLEZm5sAWszFGMQuuO9wEGVgDEgtSi4QYmFLzhBnYwUsuk4tFGDydEVFQlqrgUlSaruCSWZwMWlNZaaXgCduJp5sDWtej4JJYkqgQADlVARiWCgGIXZKiDMpuriHOHrow--OhKaQ4HuEfYzEGFmBXP1WCQQFYfxsbWyabGFokJpoYWCRamqQapRlbGiSaWxinphmaSjLI4DNJCr-0PAOnR4ivT7yPp5-3NAOXEWghP2g8wVKGgaWkqDRVFli9liTJgcMQALG4gbY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collaborative+Drug+Discovery%3A+Inference-level+Data+Protection+Perspective&rft.jtitle=arXiv.org&rft.au=Pejo%2C+Balazs&rft.au=Remeli%2C+Mina&rft.au=Arany%2C+Adam&rft.au=Galtier%2C+Mathieu&rft.date=2022-06-09&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422