Collaborative Drug Discovery: Inference-level Data Protection Perspective
Pharmaceutical industry can better leverage its data assets to virtualize drug discovery through a collaborative machine learning platform. On the other hand, there are non-negligible risks stemming from the unintended leakage of participants' training data, hence, it is essential for such a pl...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
09.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pharmaceutical industry can better leverage its data assets to virtualize drug discovery through a collaborative machine learning platform. On the other hand, there are non-negligible risks stemming from the unintended leakage of participants' training data, hence, it is essential for such a platform to be secure and privacy-preserving. This paper describes a privacy risk assessment for collaborative modeling in the preclinical phase of drug discovery to accelerate the selection of promising drug candidates. After a short taxonomy of state-of-the-art inference attacks we adopt and customize several to the underlying scenario. Finally we describe and experiments with a handful of relevant privacy protection techniques to mitigate such attacks. |
---|---|
AbstractList | Pharmaceutical industry can better leverage its data assets to virtualize drug discovery through a collaborative machine learning platform. On the other hand, there are non-negligible risks stemming from the unintended leakage of participants' training data, hence, it is essential for such a platform to be secure and privacy-preserving. This paper describes a privacy risk assessment for collaborative modeling in the preclinical phase of drug discovery to accelerate the selection of promising drug candidates. After a short taxonomy of state-of-the-art inference attacks we adopt and customize several to the underlying scenario. Finally we describe and experiments with a handful of relevant privacy protection techniques to mitigate such attacks. |
Author | Arany, Adam Acs, Gergely Remeli, Mina Pejo, Balazs Galtier, Mathieu |
Author_xml | – sequence: 1 givenname: Balazs surname: Pejo fullname: Pejo, Balazs – sequence: 2 givenname: Mina surname: Remeli fullname: Remeli, Mina – sequence: 3 givenname: Adam surname: Arany fullname: Arany, Adam – sequence: 4 givenname: Mathieu surname: Galtier fullname: Galtier, Mathieu – sequence: 5 givenname: Gergely surname: Acs fullname: Acs, Gergely |
BookMark | eNqNiksKwjAUAIMoWLV3CLgutEk_6rZV7K4L9yWWV2kJefUlDXh7FTyAqxmY2bClQQMLFggpk-iQCrFmobVjHMciL0SWyYDVJWqt7kjKDR54RfODV4Pt0AO9Trw2PRCYDiINHjSvlFO8IXTQuQENb4Ds9HUPO7bqlbYQ_rhl-8v5Vl6jifA5g3XtiDOZT2pFnqfHLEmLWP53vQH_Dj5u |
ContentType | Paper |
Copyright | 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Engineering Collection ProQuest Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
ID | FETCH-proquest_journals_26649514703 |
IEDL.DBID | 8FG |
IngestDate | Thu Oct 10 17:49:46 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-proquest_journals_26649514703 |
OpenAccessLink | https://www.proquest.com/docview/2664951470?pq-origsite=%requestingapplication% |
PQID | 2664951470 |
PQPubID | 2050157 |
ParticipantIDs | proquest_journals_2664951470 |
PublicationCentury | 2000 |
PublicationDate | 20220609 |
PublicationDateYYYYMMDD | 2022-06-09 |
PublicationDate_xml | – month: 06 year: 2022 text: 20220609 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2022 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 3.4045641 |
SecondaryResourceType | preprint |
Snippet | Pharmaceutical industry can better leverage its data assets to virtualize drug discovery through a collaborative machine learning platform. On the other hand,... |
SourceID | proquest |
SourceType | Aggregation Database |
SubjectTerms | Collaboration Inference Machine learning Privacy Risk assessment Taxonomy |
Title | Collaborative Drug Discovery: Inference-level Data Protection Perspective |
URI | https://www.proquest.com/docview/2664951470 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQAWaZxGQDCxNdwzTzRGAHxSRFNwlY8wBZKSZmSeaGKZapoM3Jvn5mHqEmXhGmEdABt2LoskpYmQguqFPyk0Fj5PrAigTYljc0MTewLyjUBd0aBZpdhV6hwczAamhkbg7qfFm4ucPHWIzMzIEtZmOMYhZcd7gJMrAGJBakFgkxMKXmCTOwg5dcJheLMHg6I6KgLFXBpag0XcElszgZtKay0krBE7YTTzcHtK5HwSWxJFEhAHKqAjAsFQIQuyRFGZTdXEOcPXRh9sdDU0hxPMI_xmIMLMCufqoEgwKw_jY2tkw2MbRITDQxsEi0NEk1SjO2NEg0tzBOTTM0lWSQwWeSFH5paQYuI9DifdAYgqUMA0tJUWmqLLBKLUmSA4ebHAOrk6tfQBCQ51vnCgCp4oGf |
link.rule.ids | 783,787,12777,21400,33385,33756,43612,43817 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQAWaZxGQDCxNdwzTzRGAHxSRFNwlY8wBZKSZmSeaGKZapoM3Jvn5mHqEmXhGmEdABt2LoskpYmQguqFPyk0Fj5PrAigTYljc0MTewLyjUBd0aBZpdhV6hwczAamIMrKtBO8Xd3OFjLEZm5sAWszFGMQuuO9wEGVgDEgtSi4QYmFLzhBnYwUsuk4tFGDydEVFQlqrgUlSaruCSWZwMWlNZaaXgCduJp5sDWtej4JJYkqgQADlVARiWCgGIXZKiDMpuriHOHrow--OhKaQ4HuEfYzEGFmBXP1WCQQFYfxsbWyabGFokJpoYWCRamqQapRlbGiSaWxinphmaSjLI4DNJCr-0PAOnR4ivT7yPp5-3NAOXEWghP2g8wVKGgaWkqDRVFli9liTJgcMQALG4gbY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collaborative+Drug+Discovery%3A+Inference-level+Data+Protection+Perspective&rft.jtitle=arXiv.org&rft.au=Pejo%2C+Balazs&rft.au=Remeli%2C+Mina&rft.au=Arany%2C+Adam&rft.au=Galtier%2C+Mathieu&rft.date=2022-06-09&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422 |