Towards Reliable Image Outpainting: Learning Structure-Aware Multimodal Fusion with Depth Guidance
Image outpainting technology generates visually plausible content regardless of authenticity, making it unreliable to be applied in practice. Thus, we propose a reliable image outpainting task, introducing the sparse depth from LiDARs to extrapolate authentic RGB scenes. The large field view of LiDA...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
16.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Image outpainting technology generates visually plausible content regardless of authenticity, making it unreliable to be applied in practice. Thus, we propose a reliable image outpainting task, introducing the sparse depth from LiDARs to extrapolate authentic RGB scenes. The large field view of LiDARs allows it to serve for data enhancement and further multimodal tasks. Concretely, we propose a Depth-Guided Outpainting Network to model different feature representations of two modalities and learn the structure-aware cross-modal fusion. And two components are designed: 1) The Multimodal Learning Module produces unique depth and RGB feature representations from the perspectives of different modal characteristics. 2) The Depth Guidance Fusion Module leverages the complete depth modality to guide the establishment of RGB contents by progressive multimodal feature fusion. Furthermore, we specially design an additional constraint strategy consisting of Cross-modal Loss and Edge Loss to enhance ambiguous contours and expedite reliable content generation. Extensive experiments on KITTI and Waymo datasets demonstrate our superiority over the state-of-the-art method, quantitatively and qualitatively. |
---|---|
AbstractList | Image outpainting technology generates visually plausible content regardless of authenticity, making it unreliable to be applied in practice. Thus, we propose a reliable image outpainting task, introducing the sparse depth from LiDARs to extrapolate authentic RGB scenes. The large field view of LiDARs allows it to serve for data enhancement and further multimodal tasks. Concretely, we propose a Depth-Guided Outpainting Network to model different feature representations of two modalities and learn the structure-aware cross-modal fusion. And two components are designed: 1) The Multimodal Learning Module produces unique depth and RGB feature representations from the perspectives of different modal characteristics. 2) The Depth Guidance Fusion Module leverages the complete depth modality to guide the establishment of RGB contents by progressive multimodal feature fusion. Furthermore, we specially design an additional constraint strategy consisting of Cross-modal Loss and Edge Loss to enhance ambiguous contours and expedite reliable content generation. Extensive experiments on KITTI and Waymo datasets demonstrate our superiority over the state-of-the-art method, quantitatively and qualitatively. |
Author | Lin, Chunyu Zhao, Yao Zhang, Lei Liao, Kang |
Author_xml | – sequence: 1 givenname: Lei surname: Zhang fullname: Zhang, Lei – sequence: 2 givenname: Kang surname: Liao fullname: Liao, Kang – sequence: 3 givenname: Chunyu surname: Lin fullname: Lin, Chunyu – sequence: 4 givenname: Yao surname: Zhao fullname: Zhao, Yao |
BookMark | eNqNi8sKwjAURIMoWB__cMF1oSZtre5ErQqKoO4ltVdNSZOaB_6-XfgBbmYOzJkB6SqtsEMCytg0zGJK-2RsbRVFEU1nNElYQIqr_nBTWjijFLyQCPuaPxFO3jVcKCfUcwEH5Ea1BBdn_N15g-GyfSEcvXSi1iWXkHsrtIKPcC9YY9Pm1ouSqzuOSO_BpcXxr4dkkm-uq13YGP32aN2t0t6odrrRNJ5nbJrNE_af9QUUYEeB |
ContentType | Paper |
Copyright | 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
ID | FETCH-proquest_journals_26498318953 |
IEDL.DBID | BENPR |
IngestDate | Thu Oct 10 16:28:43 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-proquest_journals_26498318953 |
OpenAccessLink | https://www.proquest.com/docview/2649831895?pq-origsite=%requestingapplication% |
PQID | 2649831895 |
PQPubID | 2050157 |
ParticipantIDs | proquest_journals_2649831895 |
PublicationCentury | 2000 |
PublicationDate | 20230216 |
PublicationDateYYYYMMDD | 2023-02-16 |
PublicationDate_xml | – month: 02 year: 2023 text: 20230216 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2023 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 3.4490118 |
SecondaryResourceType | preprint |
Snippet | Image outpainting technology generates visually plausible content regardless of authenticity, making it unreliable to be applied in practice. Thus, we propose... |
SourceID | proquest |
SourceType | Aggregation Database |
SubjectTerms | Color imagery Learning Modules Representations Robotics |
Title | Towards Reliable Image Outpainting: Learning Structure-Aware Multimodal Fusion with Depth Guidance |
URI | https://www.proquest.com/docview/2649831895 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JSwMxFH7YGQRvrrjUEtBr0JnOkvEiLjOtgrVohd5KVhHszNjpXP3tJiHVg9BLIISErO_lffnyHsB5SAKVhWmMFQsFjniiMKGK4SRKqcriPlfKevscJcO36HEaTx3g1jha5UomWkEtKm4w8gutuDOiN2AWX9df2ESNMq-rLoRGB_xQWwqXHvi3-Wj88ouyhEmq78z9f4LWao9iG_wxreViBzZkuQublnTJmz1gE8tZbZDhBZsvTOhhro83em6XtTbYDSH5CjkHqO_o1Xp6bRcS3-haEtmvs_NK0E9UtAbzQgZTRfey1umg_RBmPffhrMgnd0O86tjMbZ5m9jfU_gF4ZVXKQ0ApjZTg2gChlESCc-N3PYgCpmQaMKLUEXTXtXS8vvgEtkwcdUNHDpIueHpE8lRr2yXrQYcUg56bWJ17-s5_AHiDjKo |
link.rule.ids | 783,787,12777,21400,33385,33756,43612,43817 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwEB1BIwQ3VrEUsARXC2VPuCCWhhRKqCBIvUWOY1dINAlN8_94rBQOSL34YtmyHXvG8_L8BuDSCkwZWr5LZW4V1OGepAGTOfUcn8nQtbmUWu0z8eIP52niTjrArelolUubqA11UXHEyK-U4w4DtQFD96b-ppg1Cv-udik01sFAqSoVfBl3g2T89ouyWJ6v7sz2P0OrvUe0DcaY1WK-A2ui3IUNTbrkzR7kqeasNgR5wfiEiQxn6niT13ZRq4AdCcnXpBNAnZJ3rfTazgW9Va0E0U9nZ1XBvkjUIuZFEFMlD6JW5WP7WeD33IeLaJDex3Q5sKzbPE32N1X7AHplVYpDID5zZMFVAMJY4BSco-666Zi5FL6ZB1IeQX9VT8erq89hM05fRtlomDyfwBbmVEdqsun1oadmJ06V513kZ93y_gCmSY2N |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Reliable+Image+Outpainting%3A+Learning+Structure-Aware+Multimodal+Fusion+with+Depth+Guidance&rft.jtitle=arXiv.org&rft.au=Zhang%2C+Lei&rft.au=Liao%2C+Kang&rft.au=Lin%2C+Chunyu&rft.au=Zhao%2C+Yao&rft.date=2023-02-16&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422 |