Towards Reliable Image Outpainting: Learning Structure-Aware Multimodal Fusion with Depth Guidance

Image outpainting technology generates visually plausible content regardless of authenticity, making it unreliable to be applied in practice. Thus, we propose a reliable image outpainting task, introducing the sparse depth from LiDARs to extrapolate authentic RGB scenes. The large field view of LiDA...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Zhang, Lei, Liao, Kang, Lin, Chunyu, Zhao, Yao
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 16.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Image outpainting technology generates visually plausible content regardless of authenticity, making it unreliable to be applied in practice. Thus, we propose a reliable image outpainting task, introducing the sparse depth from LiDARs to extrapolate authentic RGB scenes. The large field view of LiDARs allows it to serve for data enhancement and further multimodal tasks. Concretely, we propose a Depth-Guided Outpainting Network to model different feature representations of two modalities and learn the structure-aware cross-modal fusion. And two components are designed: 1) The Multimodal Learning Module produces unique depth and RGB feature representations from the perspectives of different modal characteristics. 2) The Depth Guidance Fusion Module leverages the complete depth modality to guide the establishment of RGB contents by progressive multimodal feature fusion. Furthermore, we specially design an additional constraint strategy consisting of Cross-modal Loss and Edge Loss to enhance ambiguous contours and expedite reliable content generation. Extensive experiments on KITTI and Waymo datasets demonstrate our superiority over the state-of-the-art method, quantitatively and qualitatively.
AbstractList Image outpainting technology generates visually plausible content regardless of authenticity, making it unreliable to be applied in practice. Thus, we propose a reliable image outpainting task, introducing the sparse depth from LiDARs to extrapolate authentic RGB scenes. The large field view of LiDARs allows it to serve for data enhancement and further multimodal tasks. Concretely, we propose a Depth-Guided Outpainting Network to model different feature representations of two modalities and learn the structure-aware cross-modal fusion. And two components are designed: 1) The Multimodal Learning Module produces unique depth and RGB feature representations from the perspectives of different modal characteristics. 2) The Depth Guidance Fusion Module leverages the complete depth modality to guide the establishment of RGB contents by progressive multimodal feature fusion. Furthermore, we specially design an additional constraint strategy consisting of Cross-modal Loss and Edge Loss to enhance ambiguous contours and expedite reliable content generation. Extensive experiments on KITTI and Waymo datasets demonstrate our superiority over the state-of-the-art method, quantitatively and qualitatively.
Author Lin, Chunyu
Zhao, Yao
Zhang, Lei
Liao, Kang
Author_xml – sequence: 1
  givenname: Lei
  surname: Zhang
  fullname: Zhang, Lei
– sequence: 2
  givenname: Kang
  surname: Liao
  fullname: Liao, Kang
– sequence: 3
  givenname: Chunyu
  surname: Lin
  fullname: Lin, Chunyu
– sequence: 4
  givenname: Yao
  surname: Zhao
  fullname: Zhao, Yao
BookMark eNqNi8sKwjAURIMoWB__cMF1oSZtre5ErQqKoO4ltVdNSZOaB_6-XfgBbmYOzJkB6SqtsEMCytg0zGJK-2RsbRVFEU1nNElYQIqr_nBTWjijFLyQCPuaPxFO3jVcKCfUcwEH5Ea1BBdn_N15g-GyfSEcvXSi1iWXkHsrtIKPcC9YY9Pm1ouSqzuOSO_BpcXxr4dkkm-uq13YGP32aN2t0t6odrrRNJ5nbJrNE_af9QUUYEeB
ContentType Paper
Copyright 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_26498318953
IEDL.DBID BENPR
IngestDate Thu Oct 10 16:28:43 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_26498318953
OpenAccessLink https://www.proquest.com/docview/2649831895?pq-origsite=%requestingapplication%
PQID 2649831895
PQPubID 2050157
ParticipantIDs proquest_journals_2649831895
PublicationCentury 2000
PublicationDate 20230216
PublicationDateYYYYMMDD 2023-02-16
PublicationDate_xml – month: 02
  year: 2023
  text: 20230216
  day: 16
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2023
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.4490118
SecondaryResourceType preprint
Snippet Image outpainting technology generates visually plausible content regardless of authenticity, making it unreliable to be applied in practice. Thus, we propose...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Color imagery
Learning
Modules
Representations
Robotics
Title Towards Reliable Image Outpainting: Learning Structure-Aware Multimodal Fusion with Depth Guidance
URI https://www.proquest.com/docview/2649831895
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JSwMxFH7YGQRvrrjUEtBr0JnOkvEiLjOtgrVohd5KVhHszNjpXP3tJiHVg9BLIISErO_lffnyHsB5SAKVhWmMFQsFjniiMKGK4SRKqcriPlfKevscJcO36HEaTx3g1jha5UomWkEtKm4w8gutuDOiN2AWX9df2ESNMq-rLoRGB_xQWwqXHvi3-Wj88ouyhEmq78z9f4LWao9iG_wxreViBzZkuQublnTJmz1gE8tZbZDhBZsvTOhhro83em6XtTbYDSH5CjkHqO_o1Xp6bRcS3-haEtmvs_NK0E9UtAbzQgZTRfey1umg_RBmPffhrMgnd0O86tjMbZ5m9jfU_gF4ZVXKQ0ApjZTg2gChlESCc-N3PYgCpmQaMKLUEXTXtXS8vvgEtkwcdUNHDpIueHpE8lRr2yXrQYcUg56bWJ17-s5_AHiDjKo
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwEB1BIwQ3VrEUsARXC2VPuCCWhhRKqCBIvUWOY1dINAlN8_94rBQOSL34YtmyHXvG8_L8BuDSCkwZWr5LZW4V1OGepAGTOfUcn8nQtbmUWu0z8eIP52niTjrArelolUubqA11UXHEyK-U4w4DtQFD96b-ppg1Cv-udik01sFAqSoVfBl3g2T89ouyWJ6v7sz2P0OrvUe0DcaY1WK-A2ui3IUNTbrkzR7kqeasNgR5wfiEiQxn6niT13ZRq4AdCcnXpBNAnZJ3rfTazgW9Va0E0U9nZ1XBvkjUIuZFEFMlD6JW5WP7WeD33IeLaJDex3Q5sKzbPE32N1X7AHplVYpDID5zZMFVAMJY4BSco-666Zi5FL6ZB1IeQX9VT8erq89hM05fRtlomDyfwBbmVEdqsun1oadmJ06V513kZ93y_gCmSY2N
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Reliable+Image+Outpainting%3A+Learning+Structure-Aware+Multimodal+Fusion+with+Depth+Guidance&rft.jtitle=arXiv.org&rft.au=Zhang%2C+Lei&rft.au=Liao%2C+Kang&rft.au=Lin%2C+Chunyu&rft.au=Zhao%2C+Yao&rft.date=2023-02-16&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422