BigBird: Big Data Storage and Analytics at Scale in Hybrid Cloud
Implementing big data storage at scale is a complex and arduous task that requires an advanced infrastructure. With the rise of public cloud computing, various big data management services can be readily leveraged. As a critical part of Twitter's "Project Partly Cloudy", the cold stor...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
22.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Implementing big data storage at scale is a complex and arduous task that requires an advanced infrastructure. With the rise of public cloud computing, various big data management services can be readily leveraged. As a critical part of Twitter's "Project Partly Cloudy", the cold storage data and analytics systems are being moved to the public cloud. This paper showcases our approach in designing a scalable big data storage and analytics management framework using BigQuery in Google Cloud Platform while ensuring security, privacy, and data protection. The paper also discusses the limitations on the public cloud resources and how they can be effectively overcome when designing a big data storage and analytics solution at scale. Although the paper discusses the framework implementation in Google Cloud Platform, it can easily be applied to all major cloud providers. |
---|---|
AbstractList | Implementing big data storage at scale is a complex and arduous task that requires an advanced infrastructure. With the rise of public cloud computing, various big data management services can be readily leveraged. As a critical part of Twitter's "Project Partly Cloudy", the cold storage data and analytics systems are being moved to the public cloud. This paper showcases our approach in designing a scalable big data storage and analytics management framework using BigQuery in Google Cloud Platform while ensuring security, privacy, and data protection. The paper also discusses the limitations on the public cloud resources and how they can be effectively overcome when designing a big data storage and analytics solution at scale. Although the paper discusses the framework implementation in Google Cloud Platform, it can easily be applied to all major cloud providers. |
Author | Channapattan, Vrushali Steelman, Gary Deochake, Saurabh |
Author_xml | – sequence: 1 givenname: Saurabh surname: Deochake fullname: Deochake, Saurabh – sequence: 2 givenname: Vrushali surname: Channapattan fullname: Channapattan, Vrushali – sequence: 3 givenname: Gary surname: Steelman fullname: Steelman, Gary |
BookMark | eNqNjL0KwjAYAIMoWLXv8IFzISb9w0lbFfe6l88mlpSQaJIOfXs7-ABOd8NxG7I01sgFiRjnh6RMGVuT2PuBUsrygmUZj8ipUn2lnDjCLHDBgNAE67CXgEbA2aCeguo8YICmQy1BGbhPT6cE1NqOYkdWL9Rexj9uyf52fdT35O3sZ5Q-tIMd3bzxLctTRkualwX_r_oCn345Dw |
ContentType | Paper |
Copyright | 2022. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
ID | FETCH-proquest_journals_26420806873 |
IEDL.DBID | BENPR |
IngestDate | Thu Oct 10 15:59:16 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-proquest_journals_26420806873 |
OpenAccessLink | https://www.proquest.com/docview/2642080687?pq-origsite=%requestingapplication% |
PQID | 2642080687 |
PQPubID | 2050157 |
ParticipantIDs | proquest_journals_2642080687 |
PublicationCentury | 2000 |
PublicationDate | 20220322 |
PublicationDateYYYYMMDD | 2022-03-22 |
PublicationDate_xml | – month: 03 year: 2022 text: 20220322 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2022 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 3.383723 |
SecondaryResourceType | preprint |
Snippet | Implementing big data storage at scale is a complex and arduous task that requires an advanced infrastructure. With the rise of public cloud computing, various... |
SourceID | proquest |
SourceType | Aggregation Database |
SubjectTerms | Big Data Cloud computing Cold storage Data analysis Data management Data storage Management services Mathematical analysis |
Title | BigBird: Big Data Storage and Analytics at Scale in Hybrid Cloud |
URI | https://www.proquest.com/docview/2642080687 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED9ci-Cbn_gxR0Bfg236scYXpbO1CBvDKextpE0ig7HNtnvwxb_dS-n0QdhbQiAhx-Xud5f7ALhFFKo94ee00JGkfqQ05TLn1NHIUajuNecmOXk4CrN3_2UaTFuHW9WGVW5lYiOo5aowPvI7VNwM0U0Y9R_Wn9R0jTK_q20LjQ7YDC0FxwI7Tkbj118vCwv7iJm9f4K20R7pIdhjsVblEeyp5THsN0GXRXUCj_H8I56X8p7ggDyJWpAJmsD4wgna96SpF2KqKBNRkwnSUpH5kmRfJseKDBarjTyFmzR5G2R0e-ysZY1q9ncR7wwstPHVORDXVUFQIBpRCHA8pXngSFUEOaIDX7iCX0B3106Xu5ev4ICZqH3Ho4x1warLjbpGXVrnPehE6XOvJRvOht_JD9T-fR0 |
link.rule.ids | 783,787,12777,21400,33385,33756,43612,43817 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFH_ohujNT_yYGtBrsG3SrvGibFqrbkPYhN1K2iRSkG223cH_3pfS6UHYLRBIyCN5v997eR8A18hCDZM8pZkJFeWhNlSoVFDH4I1CuDdC2OTk4SiI3_nL1J82DreyCatc6cRaUat5Zn3kNwjcHrKbIOzeLb6o7Rplf1ebFhqb0OYMsdpmikdPvz4WL-giY2b_1GyNHdEutN_kQhd7sKFn-7BVh1xm5QHc9_KPXl6oW4ID8iArScZoAOP7Jmjdk7paiK2hTGRFxihJTfIZib9thhXpf86X6hCuosdJP6arbZPmYpTJ3zHYEbTQwtfHQFxX-36GXEQjvWHaCN9ROvNT5AZculKcQGfdSqfrpy9hO54MB8ngefR6Bjuejd93GPW8DrSqYqnPEVWr9KIW3Q_TPnyR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BigBird%3A+Big+Data+Storage+and+Analytics+at+Scale+in+Hybrid+Cloud&rft.jtitle=arXiv.org&rft.au=Deochake%2C+Saurabh&rft.au=Channapattan%2C+Vrushali&rft.au=Steelman%2C+Gary&rft.date=2022-03-22&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422 |