LiP-Flow: Learning Inference-time Priors for Codec Avatars via Normalizing Flows in Latent Space

Neural face avatars that are trained from multi-view data captured in camera domes can produce photo-realistic 3D reconstructions. However, at inference time, they must be driven by limited inputs such as partial views recorded by headset-mounted cameras or a front-facing camera, and sparse facial l...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Aksan, Emre, Ma, Shugao, Caliskan, Akin, Pidhorskyi, Stanislav, Alexander, Richard, Shih-En Wei, Saragih, Jason, Hilliges, Otmar
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 15.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Neural face avatars that are trained from multi-view data captured in camera domes can produce photo-realistic 3D reconstructions. However, at inference time, they must be driven by limited inputs such as partial views recorded by headset-mounted cameras or a front-facing camera, and sparse facial landmarks. To mitigate this asymmetry, we introduce a prior model that is conditioned on the runtime inputs and tie this prior space to the 3D face model via a normalizing flow in the latent space. Our proposed model, LiP-Flow, consists of two encoders that learn representations from the rich training-time and impoverished inference-time observations. A normalizing flow bridges the two representation spaces and transforms latent samples from one domain to another, allowing us to define a latent likelihood objective. We trained our model end-to-end to maximize the similarity of both representation spaces and the reconstruction quality, making the 3D face model aware of the limited driving signals. We conduct extensive evaluations where the latent codes are optimized to reconstruct 3D avatars from partial or sparse observations. We show that our approach leads to an expressive and effective prior, capturing facial dynamics and subtle expressions better.
ISSN:2331-8422