Beyond the Policy Gradient Theorem for Efficient Policy Updates in Actor-Critic Algorithms

In Reinforcement Learning, the optimal action at a given state is dependent on policy decisions at subsequent states. As a consequence, the learning targets evolve with time and the policy optimization process must be efficient at unlearning what it previously learnt. In this paper, we discover that...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Laroche, Romain, Tachet, Remi
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 15.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In Reinforcement Learning, the optimal action at a given state is dependent on policy decisions at subsequent states. As a consequence, the learning targets evolve with time and the policy optimization process must be efficient at unlearning what it previously learnt. In this paper, we discover that the policy gradient theorem prescribes policy updates that are slow to unlearn because of their structural symmetry with respect to the value target. To increase the unlearning speed, we study a novel policy update: the gradient of the cross-entropy loss with respect to the action maximizing \(q\), but find that such updates may lead to a decrease in value. Consequently, we introduce a modified policy update devoid of that flaw, and prove its guarantees of convergence to global optimality in \(\mathcal{O}(t^{-1})\) under classic assumptions. Further, we assess standard policy updates and our cross-entropy policy updates along six analytical dimensions. Finally, we empirically validate our theoretical findings.
AbstractList In Reinforcement Learning, the optimal action at a given state is dependent on policy decisions at subsequent states. As a consequence, the learning targets evolve with time and the policy optimization process must be efficient at unlearning what it previously learnt. In this paper, we discover that the policy gradient theorem prescribes policy updates that are slow to unlearn because of their structural symmetry with respect to the value target. To increase the unlearning speed, we study a novel policy update: the gradient of the cross-entropy loss with respect to the action maximizing \(q\), but find that such updates may lead to a decrease in value. Consequently, we introduce a modified policy update devoid of that flaw, and prove its guarantees of convergence to global optimality in \(\mathcal{O}(t^{-1})\) under classic assumptions. Further, we assess standard policy updates and our cross-entropy policy updates along six analytical dimensions. Finally, we empirically validate our theoretical findings.
Author Laroche, Romain
Tachet, Remi
Author_xml – sequence: 1
  givenname: Romain
  surname: Laroche
  fullname: Laroche, Romain
– sequence: 2
  givenname: Remi
  surname: Tachet
  fullname: Tachet, Remi
BookMark eNqNirEOgjAURRujiaj8w0ucSbBV1BEJ6uigi4sh5VVKsE_bMvD3EsMHOJ2bc8-MjQ0ZHLGAC7GKdmvOpyx0ro7jmCdbvtmIgN0P2JEpwVcIF2q07OBki1Kj8XCtkCy-QJGFXCktf3aobu-y8OhAG0ilJxtlVnstIW2e1K_q5RZsoorGYThwzpbH_Jqdo7elT4vOP2pqremvB0_4fpUIvt6J_6ovXBFD9g
ContentType Paper
Copyright 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Engineering Collection
ProQuest Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_26291632483
IEDL.DBID 8FG
IngestDate Thu Oct 10 18:32:31 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_26291632483
OpenAccessLink https://www.proquest.com/docview/2629163248?pq-origsite=%requestingapplication%
PQID 2629163248
PQPubID 2050157
ParticipantIDs proquest_journals_2629163248
PublicationCentury 2000
PublicationDate 20220215
PublicationDateYYYYMMDD 2022-02-15
PublicationDate_xml – month: 02
  year: 2022
  text: 20220215
  day: 15
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.3873508
SecondaryResourceType preprint
Snippet In Reinforcement Learning, the optimal action at a given state is dependent on policy decisions at subsequent states. As a consequence, the learning targets...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Entropy (Information theory)
Machine learning
Optimization
Theorems
Title Beyond the Policy Gradient Theorem for Efficient Policy Updates in Actor-Critic Algorithms
URI https://www.proquest.com/docview/2629163248
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90RfDNT_yYI6CvRZukTX2SKe2GsDHEwfBltGmigttqW1_9272kmT4Ie8wHIQnJ3e93udwBXEnKcxFKvN9KI0HRAffzggV-IFmQSYQc2gZ7Ho2j4ZQ_zsKZM7jVzq1yLROtoC5W0tjIr2lEEcmg-o_vyk_fZI0yr6suhcY2eAEVwpzqOB382lhoJBAxs39i1uqOdA-8SVaqah-21PIAdqzLpawP4aX9PEIQgZE2Oi8ZVNYBqyH2x7xaEESUJLFBHkyt6zUtDUuvyfuS9I3J3W_TFZD-xytOuHlb1EdwmSbPD0N_PaG5OzL1_G-B7Bg6yP3VCRCaM8G1ym-10vymELFmUSw1k8gckEllp9DdNNLZ5uZz2KXGm9_kNwm70GmqL3WBOrbJe3Yje-DdJ-PJE5ZG38kPuTSHdw
link.rule.ids 783,787,12779,21402,33387,33758,43614,43819
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFH_ohujNT3RODei1aJP0w5MMWVd1Gx42GF5KmyZOcLNr6__vS5rpQdg1CSEJyXu_38v7ALgRlGeBJ_B9S4UERbncyXLmOq5gbioQciiT7Hk09uMpf555M2twq6xb5VomGkGdfwltI7-lPkUkg-o_fChWjq4apX9XbQmNbWhzhopGR4pHg18bC_UDRMzsn5g1uiPah_ZrWsjyALbk8hB2jMulqI7grQkeIYjASJOdlwxK44BVExMxLxcEESXpmyQPutWOmhaapVfkY0l62uTuNOUKSO_zHRdczxfVMVxH_clj7KwXlNgrUyV_G2Qn0ELuL0-B0IwFXMnsXknF7_IgVMwPhWICmQMyqfQMuptm6mzuvoLdeDIaJsOn8cs57FHt2a9rnXhdaNXlt7xAfVtnl-ZQfwC1JoeO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+the+Policy+Gradient+Theorem+for+Efficient+Policy+Updates+in+Actor-Critic+Algorithms&rft.jtitle=arXiv.org&rft.au=Laroche%2C+Romain&rft.au=Tachet%2C+Remi&rft.date=2022-02-15&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422