A Discontinuous Galerkin and Semismooth Newton Approach for the Numerical Solution of Bingham Flow with Variable Density

This paper is devoted to the study of Bingham flow with variable density. We propose a local bi-viscosity regularization of the stress tensor based on a Huber smoothing step. Next, our computational approach is based on a second-order, divergence-conforming discretization of the Huber regularized Bi...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors González-Andrade, Sergio, Méndez Silva, Paul E
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 18.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper is devoted to the study of Bingham flow with variable density. We propose a local bi-viscosity regularization of the stress tensor based on a Huber smoothing step. Next, our computational approach is based on a second-order, divergence-conforming discretization of the Huber regularized Bingham constitutive equations, coupled with a discontinuous Galerkin scheme for the mass density. We take advantage of the properties of the divergence conforming and discontinuous Galerkin formulations to incorporate upwind discretizations to stabilize the formulation. The stability of the continuous problem and the full-discrete scheme are analyzed. Further, a semismooth Newton method is proposed for solving the obtained fully-discretized system of equations at each time step. Finally, several numerical examples that illustrate the main features of the problem and the properties of the numerical scheme are presented.
AbstractList This paper is devoted to the study of Bingham flow with variable density. We propose a local bi-viscosity regularization of the stress tensor based on a Huber smoothing step. Next, our computational approach is based on a second-order, divergence-conforming discretization of the Huber regularized Bingham constitutive equations, coupled with a discontinuous Galerkin scheme for the mass density. We take advantage of the properties of the divergence conforming and discontinuous Galerkin formulations to incorporate upwind discretizations to stabilize the formulation. The stability of the continuous problem and the full-discrete scheme are analyzed. Further, a semismooth Newton method is proposed for solving the obtained fully-discretized system of equations at each time step. Finally, several numerical examples that illustrate the main features of the problem and the properties of the numerical scheme are presented.
Author Méndez Silva, Paul E
González-Andrade, Sergio
Author_xml – sequence: 1
  givenname: Sergio
  surname: González-Andrade
  fullname: González-Andrade, Sergio
– sequence: 2
  givenname: Paul
  surname: Méndez Silva
  middlename: E
  fullname: Méndez Silva, Paul E
BookMark eNqNjLtuwkAQRVdRkCDAP4xEjWR2wYlLEgKpaIho0WLGeGA9A_uQk7_HRT4g1SnuuedFPbMwPqmBNmY2fZtr3VfjEC5Zlun8VS8WZqB-lrCiUApH4iQpwMY69FdisHyCHTYUGpFYwxbbKAzL282LLWuoxEOsEbapQU-ldbATlyJ1jlTwTnyubQNrJy201P331pM9OoQVcqD4O1K9yrqA4z8O1WT9-f3xNe3694QhHi6SPHfTQefazIpCF7n5n_UADetPcA
ContentType Paper
Copyright 2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest - Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_26231992963
IEDL.DBID BENPR
IngestDate Thu Oct 10 19:24:56 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_26231992963
OpenAccessLink https://www.proquest.com/docview/2623199296?pq-origsite=%requestingapplication%
PQID 2623199296
PQPubID 2050157
ParticipantIDs proquest_journals_2623199296
PublicationCentury 2000
PublicationDate 20230418
PublicationDateYYYYMMDD 2023-04-18
PublicationDate_xml – month: 04
  year: 2023
  text: 20230418
  day: 18
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2023
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.4604502
SecondaryResourceType preprint
Snippet This paper is devoted to the study of Bingham flow with variable density. We propose a local bi-viscosity regularization of the stress tensor based on a Huber...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Constitutive equations
Constitutive relationships
Discretization
Divergence
Galerkin method
Mathematical analysis
Newton methods
Regularization
Stability analysis
Viscoplastic materials
Yield stress
Title A Discontinuous Galerkin and Semismooth Newton Approach for the Numerical Solution of Bingham Flow with Variable Density
URI https://www.proquest.com/docview/2623199296
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8NAEB1siuDNT_yoZUCvwTTJxuQkrW1aBEvxi95KurvBQpvUJkG9-NudiakehB5DICzD5s28N293AC5d7Qhtxcqk7cRHcqQ0p7Rg-uP9wFOuJIpQGmSH3uDZvRuLcSW4ZZWtco2JJVCrVLJGfmVTnmarZODdLN9MnhrF3dVqhEYN6jYxBcuAeqc3HD38qiy2d001s_MPaMvsEe5CfRQt9WoPtnSyD9ul6VJmB_DRxu4sY7P4LCmIgWOf0Jq1ayR6j488iW2RUiSRkIhKNGxX938jFZpIhRsOi59-yxzX6hamMXYoG71GCwzn6TuyzoovRIj5iBR22a6efx7CRdh7uh2Y6-VOqi2VTf4C4ByBkaSJPgYUfqyErXxLW9LVgYo8oYQby5aQBHMiPoHGpi-dbn59Bjs8XZ2bJy2_AUa-KvQ55eB82oSaH_abVbjp6f6r9w0vepPF
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8NAEB20RfTmJ35UHdBrsG2yMTlJtaZRaxCs0ltIdzdYaJPaJKj_3pmY6kHoORA2y-a9mTdvdgDOLW0K3YyVQceJW3KkNEa0YPrjHddWlqQUoTTIBrb_Yt0PxbAS3LLKVrnAxBKoVSpZI79oE0-zVdK1r2bvBk-N4upqNUJjFeqWSVzNneJe71djaduXFDGb_2C25A5vE-pP0UzPt2BFJ9uwVlouZbYDnx3sjjO2io-TgvJv7BFWs3KNlNzjM89hm6a0j0g4RAEadqrbv5HCTKSwDYPip9oywYW2hWmM18RFb9EUvUn6gayy4iulw9wghV02q-dfu3Dm3Q5ufGOx3LA6UFn49_nmHtSSNNH7gMKJlWgrp6mb0tKuimyhhBXLlpAEciI-gMayNx0uf3wK6_7gsR_274KHI9jgOetcRmk5Dajl80IfExvno5Nyy78B2xeTOQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Discontinuous+Galerkin+and+Semismooth+Newton+Approach+for+the+Numerical+Solution+of+Bingham+Flow+with+Variable+Density&rft.jtitle=arXiv.org&rft.au=Gonz%C3%A1lez-Andrade%2C+Sergio&rft.au=M%C3%A9ndez+Silva%2C+Paul+E&rft.date=2023-04-18&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422