Surface-Aligned Neural Radiance Fields for Controllable 3D Human Synthesis
We propose a new method for reconstructing controllable implicit 3D human models from sparse multi-view RGB videos. Our method defines the neural scene representation on the mesh surface points and signed distances from the surface of a human body mesh. We identify an indistinguishability issue that...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
03.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We propose a new method for reconstructing controllable implicit 3D human models from sparse multi-view RGB videos. Our method defines the neural scene representation on the mesh surface points and signed distances from the surface of a human body mesh. We identify an indistinguishability issue that arises when a point in 3D space is mapped to its nearest surface point on a mesh for learning surface-aligned neural scene representation. To address this issue, we propose projecting a point onto a mesh surface using a barycentric interpolation with modified vertex normals. Experiments with the ZJU-MoCap and Human3.6M datasets show that our approach achieves a higher quality in a novel-view and novel-pose synthesis than existing methods. We also demonstrate that our method easily supports the control of body shape and clothes. Project page: https://pfnet-research.github.io/surface-aligned-nerf/. |
---|---|
AbstractList | We propose a new method for reconstructing controllable implicit 3D human models from sparse multi-view RGB videos. Our method defines the neural scene representation on the mesh surface points and signed distances from the surface of a human body mesh. We identify an indistinguishability issue that arises when a point in 3D space is mapped to its nearest surface point on a mesh for learning surface-aligned neural scene representation. To address this issue, we propose projecting a point onto a mesh surface using a barycentric interpolation with modified vertex normals. Experiments with the ZJU-MoCap and Human3.6M datasets show that our approach achieves a higher quality in a novel-view and novel-pose synthesis than existing methods. We also demonstrate that our method easily supports the control of body shape and clothes. Project page: https://pfnet-research.github.io/surface-aligned-nerf/. |
Author | Fujita, Yasuhiro Xu, Tianhan Matsumoto, Eiichi |
Author_xml | – sequence: 1 givenname: Tianhan surname: Xu fullname: Xu, Tianhan – sequence: 2 givenname: Yasuhiro surname: Fujita fullname: Fujita, Yasuhiro – sequence: 3 givenname: Eiichi surname: Matsumoto fullname: Matsumoto, Eiichi |
BookMark | eNqNyrsKwjAUgOEgClbtOwScC7nYyyrVIg4O1r3E9lRT4okmzeDb6-ADOP3D9y_IFC3ChERCSp4UGyHmJPZ-YIyJLBdpKiNyrIPrVQvJ1ugbQkdPEJwy9Kw6rbAFWmkwnae9dbS0ODprjLoaoHJHD-GhkNZvHO_gtV-RWa-Mh_jXJVlX-0t5SJ7OvgL4sRlscPilRmQ857wQjMv_rg_AAj2o |
ContentType | Paper |
Copyright | 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Database (Proquest) ProQuest Central (Alumni Edition) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
ID | FETCH-proquest_journals_26171182013 |
IEDL.DBID | BENPR |
IngestDate | Thu Oct 10 19:20:20 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-proquest_journals_26171182013 |
OpenAccessLink | https://www.proquest.com/docview/2617118201?pq-origsite=%requestingapplication% |
PQID | 2617118201 |
PQPubID | 2050157 |
ParticipantIDs | proquest_journals_2617118201 |
PublicationCentury | 2000 |
PublicationDate | 20220403 |
PublicationDateYYYYMMDD | 2022-04-03 |
PublicationDate_xml | – month: 04 year: 2022 text: 20220403 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2022 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 3.3879368 |
SecondaryResourceType | preprint |
Snippet | We propose a new method for reconstructing controllable implicit 3D human models from sparse multi-view RGB videos. Our method defines the neural scene... |
SourceID | proquest |
SourceType | Aggregation Database |
SubjectTerms | Finite element method Interpolation Representations Synthesis Three dimensional models |
Title | Surface-Aligned Neural Radiance Fields for Controllable 3D Human Synthesis |
URI | https://www.proquest.com/docview/2617118201 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFH64FsHb_IU_5gjotdg1TZueRGfrGGyMTWG3kWSpDMqczXbYxb_dl9rpQdgxBEISkve-9-XLewB3ccJ9QaXAsARvU5h3mJdon3kySSTlOSJeaQn9wTDqvYX9KZvWhJupZZU7m1gZ6vmHshz5vc0cbsGw33lYfXq2apR9Xa1LaDTADTBS8B1wn9LhaPzLsgRRjJiZ_jO0lffImuCOxEqXx3CglydwWIkulTmF_mRT5kJp77FYvKO5IzZThijIuMoXoDTJrLzMEMSVpPsjKS_sTydCn0lFvpPJdokAzizMGdxm6Wu35-0mMKsPiZn9LYmeg4PRvr4AwhHTUB3GPMrDkCkmuZAYMs21YoHA-3gJrX0jXe3vvoajwOr3rfSEtsBZlxt9g151LdvQ4NlLu95AbA2-0m_v6oCr |
link.rule.ids | 783,787,12777,21400,33385,33756,43612,43817 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90RfTNT_yYGtDXYtc0_XgSnSt1bmVsE_ZWkiwdgzJnsz3433upnT4Iew6EJOTufvfLL3cA90EUOpwKjmkJWpOXt5gdKYfZIooEDXNEvMIQ-v3UT9697oRNasJN17LKjU-sHPX0QxqO_MFUDjdg2Gk9Lj9t0zXKvK7WLTR2wTKlqjD5sp476WD4y7K4foCYmf5ztFX0iA_BGvClKo9gRy2OYa8SXUp9At3Rusy5VPZTMZ-huyOmUgYvyLCqFyAViY28TBPElaT9IykvzE8nQl9IRb6T0dcCAZye61O4izvjdmJvFpDVl0Rnf1uiZ9DAbF-dAwkR01DlBaGfex6TTIRcYMo0VZK5HO3xAprbZrrcPnwL-8m438t6r-nbFRy4RstvZCi0CY1VuVbXGGFX4qY-xm8cY4GO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface-Aligned+Neural+Radiance+Fields+for+Controllable+3D+Human+Synthesis&rft.jtitle=arXiv.org&rft.au=Xu%2C+Tianhan&rft.au=Fujita%2C+Yasuhiro&rft.au=Matsumoto%2C+Eiichi&rft.date=2022-04-03&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422 |