Surface-Aligned Neural Radiance Fields for Controllable 3D Human Synthesis

We propose a new method for reconstructing controllable implicit 3D human models from sparse multi-view RGB videos. Our method defines the neural scene representation on the mesh surface points and signed distances from the surface of a human body mesh. We identify an indistinguishability issue that...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Xu, Tianhan, Fujita, Yasuhiro, Matsumoto, Eiichi
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 03.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We propose a new method for reconstructing controllable implicit 3D human models from sparse multi-view RGB videos. Our method defines the neural scene representation on the mesh surface points and signed distances from the surface of a human body mesh. We identify an indistinguishability issue that arises when a point in 3D space is mapped to its nearest surface point on a mesh for learning surface-aligned neural scene representation. To address this issue, we propose projecting a point onto a mesh surface using a barycentric interpolation with modified vertex normals. Experiments with the ZJU-MoCap and Human3.6M datasets show that our approach achieves a higher quality in a novel-view and novel-pose synthesis than existing methods. We also demonstrate that our method easily supports the control of body shape and clothes. Project page: https://pfnet-research.github.io/surface-aligned-nerf/.
AbstractList We propose a new method for reconstructing controllable implicit 3D human models from sparse multi-view RGB videos. Our method defines the neural scene representation on the mesh surface points and signed distances from the surface of a human body mesh. We identify an indistinguishability issue that arises when a point in 3D space is mapped to its nearest surface point on a mesh for learning surface-aligned neural scene representation. To address this issue, we propose projecting a point onto a mesh surface using a barycentric interpolation with modified vertex normals. Experiments with the ZJU-MoCap and Human3.6M datasets show that our approach achieves a higher quality in a novel-view and novel-pose synthesis than existing methods. We also demonstrate that our method easily supports the control of body shape and clothes. Project page: https://pfnet-research.github.io/surface-aligned-nerf/.
Author Fujita, Yasuhiro
Xu, Tianhan
Matsumoto, Eiichi
Author_xml – sequence: 1
  givenname: Tianhan
  surname: Xu
  fullname: Xu, Tianhan
– sequence: 2
  givenname: Yasuhiro
  surname: Fujita
  fullname: Fujita, Yasuhiro
– sequence: 3
  givenname: Eiichi
  surname: Matsumoto
  fullname: Matsumoto, Eiichi
BookMark eNqNyrsKwjAUgOEgClbtOwScC7nYyyrVIg4O1r3E9lRT4okmzeDb6-ADOP3D9y_IFC3ChERCSp4UGyHmJPZ-YIyJLBdpKiNyrIPrVQvJ1ugbQkdPEJwy9Kw6rbAFWmkwnae9dbS0ODprjLoaoHJHD-GhkNZvHO_gtV-RWa-Mh_jXJVlX-0t5SJ7OvgL4sRlscPilRmQ857wQjMv_rg_AAj2o
ContentType Paper
Copyright 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Database (Proquest)
ProQuest Central (Alumni Edition)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_26171182013
IEDL.DBID BENPR
IngestDate Thu Oct 10 19:20:20 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_26171182013
OpenAccessLink https://www.proquest.com/docview/2617118201?pq-origsite=%requestingapplication%
PQID 2617118201
PQPubID 2050157
ParticipantIDs proquest_journals_2617118201
PublicationCentury 2000
PublicationDate 20220403
PublicationDateYYYYMMDD 2022-04-03
PublicationDate_xml – month: 04
  year: 2022
  text: 20220403
  day: 03
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.3879368
SecondaryResourceType preprint
Snippet We propose a new method for reconstructing controllable implicit 3D human models from sparse multi-view RGB videos. Our method defines the neural scene...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Finite element method
Interpolation
Representations
Synthesis
Three dimensional models
Title Surface-Aligned Neural Radiance Fields for Controllable 3D Human Synthesis
URI https://www.proquest.com/docview/2617118201
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFH64FsHb_IU_5gjotdg1TZueRGfrGGyMTWG3kWSpDMqczXbYxb_dl9rpQdgxBEISkve-9-XLewB3ccJ9QaXAsARvU5h3mJdon3kySSTlOSJeaQn9wTDqvYX9KZvWhJupZZU7m1gZ6vmHshz5vc0cbsGw33lYfXq2apR9Xa1LaDTADTBS8B1wn9LhaPzLsgRRjJiZ_jO0lffImuCOxEqXx3CglydwWIkulTmF_mRT5kJp77FYvKO5IzZThijIuMoXoDTJrLzMEMSVpPsjKS_sTydCn0lFvpPJdokAzizMGdxm6Wu35-0mMKsPiZn9LYmeg4PRvr4AwhHTUB3GPMrDkCkmuZAYMs21YoHA-3gJrX0jXe3vvoajwOr3rfSEtsBZlxt9g151LdvQ4NlLu95AbA2-0m_v6oCr
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90RfTNT_yYGtDXYtc0_XgSnSt1bmVsE_ZWkiwdgzJnsz3433upnT4Iew6EJOTufvfLL3cA90EUOpwKjmkJWpOXt5gdKYfZIooEDXNEvMIQ-v3UT9697oRNasJN17LKjU-sHPX0QxqO_MFUDjdg2Gk9Lj9t0zXKvK7WLTR2wTKlqjD5sp476WD4y7K4foCYmf5ztFX0iA_BGvClKo9gRy2OYa8SXUp9At3Rusy5VPZTMZ-huyOmUgYvyLCqFyAViY28TBPElaT9IykvzE8nQl9IRb6T0dcCAZye61O4izvjdmJvFpDVl0Rnf1uiZ9DAbF-dAwkR01DlBaGfex6TTIRcYMo0VZK5HO3xAprbZrrcPnwL-8m438t6r-nbFRy4RstvZCi0CY1VuVbXGGFX4qY-xm8cY4GO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface-Aligned+Neural+Radiance+Fields+for+Controllable+3D+Human+Synthesis&rft.jtitle=arXiv.org&rft.au=Xu%2C+Tianhan&rft.au=Fujita%2C+Yasuhiro&rft.au=Matsumoto%2C+Eiichi&rft.date=2022-04-03&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422