Nonlinear optical absorption in nanoscale films revealed through ultrafast acoustics

Herein we describe a novel spinning pump-probe photoacoustic technique developed to study nonlinear absorption in thin films. As a test case, an organic polycrystalline thin film of quinacridone, a well-known pigment, with a thickness in the tens of nanometers range, is excited by a femtosecond lase...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Chaban, Ievgeniia, Deska, Radoslaw, Privault, Gael, Trzop, Elzbieta, Lorenc, Maciej, Kooi, Steven E, Nelson, Keith A, Samoc, Marek, Matczyszyn, Katarzyna, Pezeril, Thomas
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 17.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Herein we describe a novel spinning pump-probe photoacoustic technique developed to study nonlinear absorption in thin films. As a test case, an organic polycrystalline thin film of quinacridone, a well-known pigment, with a thickness in the tens of nanometers range, is excited by a femtosecond laser pulse which generates a time-domain Brillouin scattering signal. This signal is directly related to the strain wave launched from the film into the substrate and can be used to quantitatively extract the nonlinear optical absorption properties of the film itself. Quinacridone exhibits both quadratic and cubic laser fluence dependence regimes which we show to correspond to two- and three-photon absorption processes. This technique can be broadly applied to materials that are difficult or impossible to characterize with conventional transmittance-based measurements including materials at the nanoscale, prone to laser damage, with very weak nonlinear properties, opaque or highly scattering.
AbstractList Herein we describe a novel spinning pump-probe photoacoustic technique developed to study nonlinear absorption in thin films. As a test case, an organic polycrystalline thin film of quinacridone, a well-known pigment, with a thickness in the tens of nanometers range, is excited by a femtosecond laser pulse which generates a time-domain Brillouin scattering signal. This signal is directly related to the strain wave launched from the film into the substrate and can be used to quantitatively extract the nonlinear optical absorption properties of the film itself. Quinacridone exhibits both quadratic and cubic laser fluence dependence regimes which we show to correspond to two- and three-photon absorption processes. This technique can be broadly applied to materials that are difficult or impossible to characterize with conventional transmittance-based measurements including materials at the nanoscale, prone to laser damage, with very weak nonlinear properties, opaque or highly scattering.
Author Samoc, Marek
Pezeril, Thomas
Trzop, Elzbieta
Privault, Gael
Kooi, Steven E
Lorenc, Maciej
Deska, Radoslaw
Nelson, Keith A
Chaban, Ievgeniia
Matczyszyn, Katarzyna
Author_xml – sequence: 1
  givenname: Ievgeniia
  surname: Chaban
  fullname: Chaban, Ievgeniia
– sequence: 2
  givenname: Radoslaw
  surname: Deska
  fullname: Deska, Radoslaw
– sequence: 3
  givenname: Gael
  surname: Privault
  fullname: Privault, Gael
– sequence: 4
  givenname: Elzbieta
  surname: Trzop
  fullname: Trzop, Elzbieta
– sequence: 5
  givenname: Maciej
  surname: Lorenc
  fullname: Lorenc, Maciej
– sequence: 6
  givenname: Steven
  surname: Kooi
  middlename: E
  fullname: Kooi, Steven E
– sequence: 7
  givenname: Keith
  surname: Nelson
  middlename: A
  fullname: Nelson, Keith A
– sequence: 8
  givenname: Marek
  surname: Samoc
  fullname: Samoc, Marek
– sequence: 9
  givenname: Katarzyna
  surname: Matczyszyn
  fullname: Matczyszyn, Katarzyna
– sequence: 10
  givenname: Thomas
  surname: Pezeril
  fullname: Pezeril, Thomas
BookMark eNqNjMEOgjAQRBujiaj8wyaeSaAF9G40njxxJxWLQOoudlu_3x78AE8z82YyG7FEQrMQiVSqyI6llGuRMk95nsv6IKtKJaK5EdoRjXZAsx87bUHfmVz0hDAioEbiiA30o30xOPMxMT3AD47Cc4BgvdO9Zg-6o8Dxg3di1WvLJv3pVuwv5-Z0zWZH72DYtxMFh7FqZZ2XspJlodR_qy-HhUNX
ContentType Paper
Copyright 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Engineering Collection
ProQuest Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_26042524133
IEDL.DBID BENPR
IngestDate Thu Oct 10 18:53:37 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_26042524133
OpenAccessLink https://www.proquest.com/docview/2604252413?pq-origsite=%requestingapplication%
PQID 2604252413
PQPubID 2050157
ParticipantIDs proquest_journals_2604252413
PublicationCentury 2000
PublicationDate 20220517
PublicationDateYYYYMMDD 2022-05-17
PublicationDate_xml – month: 05
  year: 2022
  text: 20220517
  day: 17
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.3970323
SecondaryResourceType preprint
Snippet Herein we describe a novel spinning pump-probe photoacoustic technique developed to study nonlinear absorption in thin films. As a test case, an organic...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Acoustics
Fluence
Glass substrates
Lasers
Optical properties
Photon absorption
Photons
Signal processing
Thin films
Ultrasonic methods
Title Nonlinear optical absorption in nanoscale films revealed through ultrafast acoustics
URI https://www.proquest.com/docview/2604252413
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFH-4FsGbn_gxR0Cvwa1tuu4kKK1DWBkyYbeRtAkMZlub7urf7kvM9CDs-BIISXjf7_F-APeKJ2VRlChpQylpFKuIChbFVKkRS9BFULHFT5nl8fQ9el2ypUu4addWudOJVlGXdWFy5A_odyN7mSrQY_NJDWqUqa46CI0e-AFGCkMP_Kc0n7_9ZlmCeIw-c_hP0VrrkR2DP-eNbE_gQFancGibLgt9Bov8Z04Fb0nd2Jwy4ULXrZVisq5Ixata47Ikar350MSMW0KqJA5dh2w3XcsV1x1BxWZxufQ53GXp4nlKd1dZOXbRq7_HhRfgYdwvL4GEE6YwWJoIERYRE4yXgRQiEWpkAstQXkF_30nX-7dv4CgwnfxmEOm4D17XbuUt2tdODKCXZC8D95VIzb7Sbzrdh60
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFH_oiujNT9RNDei16Nqm606CslF1K0Mq7FaSNoHB1tam-__3EjM9CDsmgZCE9_nL4_0AHiSLijwvUNOehHCDUAYup0HoStmnEYYIMjT8KdMkjL-C9zmdW8BN2bLKrU00hrqoco2RP2LcjeKlf4Ge629Xs0bp31VLobEPjm5VhcmX8zJKZp-_KIsXDjBm9v8ZWuM9xsfgzFgtmhPYE-UpHJiiy1ydQZr89KlgDalqgykTxlXVGC0mi5KUrKwUTgsiF8uVIrrdEo4KYtl1yHrZNkwy1RI0bIaXS53D_XiUvsbu9iiZFReV_V3Ov4AO5v3iEog_pBKTpSHnfh5QTlnhCc4jLvs6sfTFFfR27XS9e_kODuN0Oskmb8lHF448XdWvm5IOetBpm7W4QV_b8lv7oBtnn4iQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+optical+absorption+in+nanoscale+films+revealed+through+ultrafast+acoustics&rft.jtitle=arXiv.org&rft.au=Chaban%2C+Ievgeniia&rft.au=Deska%2C+Radoslaw&rft.au=Privault%2C+Gael&rft.au=Trzop%2C+Elzbieta&rft.date=2022-05-17&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422