Private and polynomial time algorithms for learning Gaussians and beyond

We present a fairly general framework for reducing \((\varepsilon, \delta)\) differentially private (DP) statistical estimation to its non-private counterpart. As the main application of this framework, we give a polynomial time and \((\varepsilon,\delta)\)-DP algorithm for learning (unrestricted) G...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Ashtiani, Hassan, Liaw, Christopher
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 22.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present a fairly general framework for reducing \((\varepsilon, \delta)\) differentially private (DP) statistical estimation to its non-private counterpart. As the main application of this framework, we give a polynomial time and \((\varepsilon,\delta)\)-DP algorithm for learning (unrestricted) Gaussian distributions in \(\mathbb{R}^d\). The sample complexity of our approach for learning the Gaussian up to total variation distance \(\alpha\) is \(\widetilde{O}(d^2/\alpha^2 + d^2\sqrt{\ln(1/\delta)}/\alpha \varepsilon + d\ln(1/\delta) / \alpha \varepsilon)\) matching (up to logarithmic factors) the best known information-theoretic (non-efficient) sample complexity upper bound due to Aden-Ali, Ashtiani, and Kamath (ALT'21). In an independent work, Kamath, Mouzakis, Singhal, Steinke, and Ullman (arXiv:2111.04609) proved a similar result using a different approach and with \(O(d^{5/2})\) sample complexity dependence on \(d\). As another application of our framework, we provide the first polynomial time \((\varepsilon, \delta)\)-DP algorithm for robust learning of (unrestricted) Gaussians with sample complexity \(\widetilde{O}(d^{3.5})\). In another independent work, Kothari, Manurangsi, and Velingker (arXiv:2112.03548) also provided a polynomial time \((\varepsilon, \delta)\)-DP algorithm for robust learning of Gaussians with sample complexity \(\widetilde{O}(d^8)\).
AbstractList We present a fairly general framework for reducing \((\varepsilon, \delta)\) differentially private (DP) statistical estimation to its non-private counterpart. As the main application of this framework, we give a polynomial time and \((\varepsilon,\delta)\)-DP algorithm for learning (unrestricted) Gaussian distributions in \(\mathbb{R}^d\). The sample complexity of our approach for learning the Gaussian up to total variation distance \(\alpha\) is \(\widetilde{O}(d^2/\alpha^2 + d^2\sqrt{\ln(1/\delta)}/\alpha \varepsilon + d\ln(1/\delta) / \alpha \varepsilon)\) matching (up to logarithmic factors) the best known information-theoretic (non-efficient) sample complexity upper bound due to Aden-Ali, Ashtiani, and Kamath (ALT'21). In an independent work, Kamath, Mouzakis, Singhal, Steinke, and Ullman (arXiv:2111.04609) proved a similar result using a different approach and with \(O(d^{5/2})\) sample complexity dependence on \(d\). As another application of our framework, we provide the first polynomial time \((\varepsilon, \delta)\)-DP algorithm for robust learning of (unrestricted) Gaussians with sample complexity \(\widetilde{O}(d^{3.5})\). In another independent work, Kothari, Manurangsi, and Velingker (arXiv:2112.03548) also provided a polynomial time \((\varepsilon, \delta)\)-DP algorithm for robust learning of Gaussians with sample complexity \(\widetilde{O}(d^8)\).
Author Ashtiani, Hassan
Liaw, Christopher
Author_xml – sequence: 1
  givenname: Hassan
  surname: Ashtiani
  fullname: Ashtiani, Hassan
– sequence: 2
  givenname: Christopher
  surname: Liaw
  fullname: Liaw, Christopher
BookMark eNqNi8EKgkAURYcoyMp_GGgtjDNp7qNy2aK9TDjayPiezRsD_z6JPqDVhXPO3bAlIJgFi6RSaVIcpFyzmKgTQsj8KLNMRay8efvWwXANNR_QTYC91Y4H28_MtehtePbEG_TcGe3BQsuveiSyGuj7epgJod6xVaMdmfi3W7a_nO-nMhk8vkZDoepw9DCrSuYiTfNMikL9V30A1Rw-HQ
ContentType Paper
Copyright 2022. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Database (Proquest)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_26011652083
IEDL.DBID 8FG
IngestDate Wed Sep 25 00:01:29 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_26011652083
OpenAccessLink https://www.proquest.com/docview/2601165208/abstract/?pq-origsite=%requestingapplication%
PQID 2601165208
PQPubID 2050157
ParticipantIDs proquest_journals_2601165208
PublicationCentury 2000
PublicationDate 20220622
PublicationDateYYYYMMDD 2022-06-22
PublicationDate_xml – month: 06
  year: 2022
  text: 20220622
  day: 22
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.3958602
SecondaryResourceType preprint
Snippet We present a fairly general framework for reducing \((\varepsilon, \delta)\) differentially private (DP) statistical estimation to its non-private counterpart....
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Complexity
Information theory
Machine learning
Polynomials
Upper bounds
Title Private and polynomial time algorithms for learning Gaussians and beyond
URI https://www.proquest.com/docview/2601165208/abstract/
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFH_MFcGbn_gxR0CvoU3apttJUNoVYaOIwm4jadN5qK5ru4MX_3bzSqsHYccQkkdCeF95v_cDuBe-q5R0PMrV1KUe0w6V2HFI6sxN_TyY-BLByfOFiN-856W_HEDcY2GwrLLXia2izjYp5shtbH3FhM-diS0VZgHSxn4otxT5o_CftSPTOACLYU88xIxHs99sCxeB8Z3dfwq3tSLRMViJLHV1AgP9eQqHbfFlWp9BnFTIMaaJiepJuSm-ECosC4K870QWayO8ef-oifEvScfysCYzuasRAFm3q1QLRDmHuyh8fYppL37VPZV69Xcw9wKGJubXl0Aylqpcq0wKR3pa8ykPGAuE1rlIleeqKxjt2-l6__QNHHGs4ncE5XwEw6ba6VtjWxs1bq9tDNZjuEhezGj-Hf4A8NyGNQ
link.rule.ids 786,790,12792,21416,33408,33779,43635,43840
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5BKwQbT_EoYAlWi8R2nHZiQKQB2qpDkbpFduKUIaUhTgf-Pb4ohQGps2WfzrLu5fvuA7iXAddaeYIyPeBU-MajCicOKZPxNMjDfqAQnDyeyPhdvM6DeVtws21b5cYmNoY6W6VYI3_A0Ve-DJjXfyy_KLJG4e9qS6GxC13BnetEpHg0_K2xMBm6iJn_M7ON74gOoTtVpamOYMd8HsNe03KZ2hOIpxUyixnicnlSropvBAirgiDbO1HFwgmvP5aWuKiStNwOCzJUa4uwR9vs0g385BTuoufZU0w34pP2gdjkTx1-Bh2X6ZtzIJmf6tzoTElPCWPYgIW-H0pjcplqwfUF9LaddLl9-Rb249l4lIxeJm9XcMCwj9-TlLEedOpqba6dd631TXOFP59Ggpg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Private+and+polynomial+time+algorithms+for+learning+Gaussians+and+beyond&rft.jtitle=arXiv.org&rft.au=Ashtiani%2C+Hassan&rft.au=Liaw%2C+Christopher&rft.date=2022-06-22&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422