BabelCalib: A Universal Approach to Calibrating Central Cameras

Existing calibration methods occasionally fail for large field-of-view cameras due to the non-linearity of the underlying problem and the lack of good initial values for all parameters of the used camera model. This might occur because a simpler projection model is assumed in an initial step, or a p...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Lochman, Yaroslava, Liepieshov, Kostiantyn, Chen, Jianhui, Perdoch, Michal, Zach, Christopher, Pritts, James
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 28.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Existing calibration methods occasionally fail for large field-of-view cameras due to the non-linearity of the underlying problem and the lack of good initial values for all parameters of the used camera model. This might occur because a simpler projection model is assumed in an initial step, or a poor initial guess for the internal parameters is pre-defined. A lot of the difficulties of general camera calibration lie in the use of a forward projection model. We side-step these challenges by first proposing a solver to calibrate the parameters in terms of a back-projection model and then regress the parameters for a target forward model. These steps are incorporated in a robust estimation framework to cope with outlying detections. Extensive experiments demonstrate that our approach is very reliable and returns the most accurate calibration parameters as measured on the downstream task of absolute pose estimation on test sets. The code is released at https://github.com/ylochman/babelcalib.
AbstractList Existing calibration methods occasionally fail for large field-of-view cameras due to the non-linearity of the underlying problem and the lack of good initial values for all parameters of the used camera model. This might occur because a simpler projection model is assumed in an initial step, or a poor initial guess for the internal parameters is pre-defined. A lot of the difficulties of general camera calibration lie in the use of a forward projection model. We side-step these challenges by first proposing a solver to calibrate the parameters in terms of a back-projection model and then regress the parameters for a target forward model. These steps are incorporated in a robust estimation framework to cope with outlying detections. Extensive experiments demonstrate that our approach is very reliable and returns the most accurate calibration parameters as measured on the downstream task of absolute pose estimation on test sets. The code is released at https://github.com/ylochman/babelcalib.
Author Chen, Jianhui
Lochman, Yaroslava
Liepieshov, Kostiantyn
Zach, Christopher
Pritts, James
Perdoch, Michal
Author_xml – sequence: 1
  givenname: Yaroslava
  surname: Lochman
  fullname: Lochman, Yaroslava
– sequence: 2
  givenname: Kostiantyn
  surname: Liepieshov
  fullname: Liepieshov, Kostiantyn
– sequence: 3
  givenname: Jianhui
  surname: Chen
  fullname: Chen, Jianhui
– sequence: 4
  givenname: Michal
  surname: Perdoch
  fullname: Perdoch, Michal
– sequence: 5
  givenname: Christopher
  surname: Zach
  fullname: Zach, Christopher
– sequence: 6
  givenname: James
  surname: Pritts
  fullname: Pritts, James
BookMark eNqNy9EKgjAYhuERBVl5D4OOBd1cZidho-gC7Fh-468ma7Ntdv1JdAEdfQfP9y7I1FiDExIxzrNkmzM2J7H3XZqmbFMwIXhE9gdoUUvQqt3Ril6MeqPzoGnV987C9UGDpV92EJS5U4kmuNElPNGBX5HZDbTH-LdLsj4da3lOxvo1oA9NZwdnRmqYKPJSZGVe8P9eH8ziOac
ContentType Paper
Copyright 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_25749519473
IEDL.DBID BENPR
IngestDate Thu Oct 10 18:51:23 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_25749519473
OpenAccessLink https://www.proquest.com/docview/2574951947?pq-origsite=%requestingapplication%
PQID 2574951947
PQPubID 2050157
ParticipantIDs proquest_journals_2574951947
PublicationCentury 2000
PublicationDate 20211028
PublicationDateYYYYMMDD 2021-10-28
PublicationDate_xml – month: 10
  year: 2021
  text: 20211028
  day: 28
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2021
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.3593116
SecondaryResourceType preprint
Snippet Existing calibration methods occasionally fail for large field-of-view cameras due to the non-linearity of the underlying problem and the lack of good initial...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Calibration
Cameras
Mathematical models
Parameters
Pose estimation
Projection model
Title BabelCalib: A Universal Approach to Calibrating Central Cameras
URI https://www.proquest.com/docview/2574951947
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQSTFISzYwTDbRNTc1T9M1MU811bVINkjRtUiFHE9inGwK2jvs62fmEWriFWEaAR1wK4Yuq4SVieCCOiU_GTRGrg9MWsC2PLDLbW5fUKgLujUKNLsKvUKDmYHVCNhTMGBhYHVy9QsIgo-yGJmZA9vMxhgFLbj2cBNkYA1ILEgtEmJgSs0TZmAHL7pMLhZhsHdKTErNAe2OSrJScFSArpFIzFFwhB70rVCSrwCWBkVTXroCdCgWKAYaSioWZVB2cw1x9tCF2RoPTRnF8Qh_GIsxsAC7-KkSDArANntyUpKxoWGaialJsoGxpQWwlk1MMUkzA5IWiSmSDDL4TJLCLy3NwGUEWokBLHGNLGQYWEqKSlNlgVVpSZIcA7OFm7scNNSAPN86VwB0S32I
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60i-jNJz6qBvQa3EeyiV5KKy2rtkuRCr0t2Wy2l9LW7vr_naypHoRecshAQpJhHl_mAXBf-KX2A82o4KKkTBhOpfYLKs1PeZJIc5s7PErj5IO9TvnUAW6VC6vcyMRGUBdLbTHyB2QttOXR5Rad1Se1XaPs76probELni1Vhc6X1-un4_dflCWMBdrM0T9B22iPwSF4Y7Uy6yPYMYtj2GuCLnV1Ap2eys3cZkflT6RLXIyEmpOuK_RN6iVpyPaZFjPioFics1BSdQp3g_7kOaGbXTPHGVX2d47oDFro4ptzIGiz6zyPgqBknGk_epSoZVXByhhHqYoLaG9b6XI7-Rb2k8lomA1f0rcrOAhtVAZK31C2oVWvv8w1qtU6v3F39w2f4X5r
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BabelCalib%3A+A+Universal+Approach+to+Calibrating+Central+Cameras&rft.jtitle=arXiv.org&rft.au=Lochman%2C+Yaroslava&rft.au=Liepieshov%2C+Kostiantyn&rft.au=Chen%2C+Jianhui&rft.au=Perdoch%2C+Michal&rft.date=2021-10-28&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422