BabelCalib: A Universal Approach to Calibrating Central Cameras
Existing calibration methods occasionally fail for large field-of-view cameras due to the non-linearity of the underlying problem and the lack of good initial values for all parameters of the used camera model. This might occur because a simpler projection model is assumed in an initial step, or a p...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
28.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Existing calibration methods occasionally fail for large field-of-view cameras due to the non-linearity of the underlying problem and the lack of good initial values for all parameters of the used camera model. This might occur because a simpler projection model is assumed in an initial step, or a poor initial guess for the internal parameters is pre-defined. A lot of the difficulties of general camera calibration lie in the use of a forward projection model. We side-step these challenges by first proposing a solver to calibrate the parameters in terms of a back-projection model and then regress the parameters for a target forward model. These steps are incorporated in a robust estimation framework to cope with outlying detections. Extensive experiments demonstrate that our approach is very reliable and returns the most accurate calibration parameters as measured on the downstream task of absolute pose estimation on test sets. The code is released at https://github.com/ylochman/babelcalib. |
---|---|
AbstractList | Existing calibration methods occasionally fail for large field-of-view cameras due to the non-linearity of the underlying problem and the lack of good initial values for all parameters of the used camera model. This might occur because a simpler projection model is assumed in an initial step, or a poor initial guess for the internal parameters is pre-defined. A lot of the difficulties of general camera calibration lie in the use of a forward projection model. We side-step these challenges by first proposing a solver to calibrate the parameters in terms of a back-projection model and then regress the parameters for a target forward model. These steps are incorporated in a robust estimation framework to cope with outlying detections. Extensive experiments demonstrate that our approach is very reliable and returns the most accurate calibration parameters as measured on the downstream task of absolute pose estimation on test sets. The code is released at https://github.com/ylochman/babelcalib. |
Author | Chen, Jianhui Lochman, Yaroslava Liepieshov, Kostiantyn Zach, Christopher Pritts, James Perdoch, Michal |
Author_xml | – sequence: 1 givenname: Yaroslava surname: Lochman fullname: Lochman, Yaroslava – sequence: 2 givenname: Kostiantyn surname: Liepieshov fullname: Liepieshov, Kostiantyn – sequence: 3 givenname: Jianhui surname: Chen fullname: Chen, Jianhui – sequence: 4 givenname: Michal surname: Perdoch fullname: Perdoch, Michal – sequence: 5 givenname: Christopher surname: Zach fullname: Zach, Christopher – sequence: 6 givenname: James surname: Pritts fullname: Pritts, James |
BookMark | eNqNy9EKgjAYhuERBVl5D4OOBd1cZidho-gC7Fh-468ma7Ntdv1JdAEdfQfP9y7I1FiDExIxzrNkmzM2J7H3XZqmbFMwIXhE9gdoUUvQqt3Ril6MeqPzoGnV987C9UGDpV92EJS5U4kmuNElPNGBX5HZDbTH-LdLsj4da3lOxvo1oA9NZwdnRmqYKPJSZGVe8P9eH8ziOac |
ContentType | Paper |
Copyright | 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Engineering Collection Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
ID | FETCH-proquest_journals_25749519473 |
IEDL.DBID | BENPR |
IngestDate | Thu Oct 10 18:51:23 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-proquest_journals_25749519473 |
OpenAccessLink | https://www.proquest.com/docview/2574951947?pq-origsite=%requestingapplication% |
PQID | 2574951947 |
PQPubID | 2050157 |
ParticipantIDs | proquest_journals_2574951947 |
PublicationCentury | 2000 |
PublicationDate | 20211028 |
PublicationDateYYYYMMDD | 2021-10-28 |
PublicationDate_xml | – month: 10 year: 2021 text: 20211028 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2021 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 3.3593116 |
SecondaryResourceType | preprint |
Snippet | Existing calibration methods occasionally fail for large field-of-view cameras due to the non-linearity of the underlying problem and the lack of good initial... |
SourceID | proquest |
SourceType | Aggregation Database |
SubjectTerms | Calibration Cameras Mathematical models Parameters Pose estimation Projection model |
Title | BabelCalib: A Universal Approach to Calibrating Central Cameras |
URI | https://www.proquest.com/docview/2574951947 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQSTFISzYwTDbRNTc1T9M1MU811bVINkjRtUiFHE9inGwK2jvs62fmEWriFWEaAR1wK4Yuq4SVieCCOiU_GTRGrg9MWsC2PLDLbW5fUKgLujUKNLsKvUKDmYHVCNhTMGBhYHVy9QsIgo-yGJmZA9vMxhgFLbj2cBNkYA1ILEgtEmJgSs0TZmAHL7pMLhZhsHdKTErNAe2OSrJScFSArpFIzFFwhB70rVCSrwCWBkVTXroCdCgWKAYaSioWZVB2cw1x9tCF2RoPTRnF8Qh_GIsxsAC7-KkSDArANntyUpKxoWGaialJsoGxpQWwlk1MMUkzA5IWiSmSDDL4TJLCLy3NwGUEWokBLHGNLGQYWEqKSlNlgVVpSZIcA7OFm7scNNSAPN86VwB0S32I |
link.rule.ids | 783,787,12777,21400,33385,33756,43612,43817 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60i-jNJz6qBvQa3EeyiV5KKy2rtkuRCr0t2Wy2l9LW7vr_naypHoRecshAQpJhHl_mAXBf-KX2A82o4KKkTBhOpfYLKs1PeZJIc5s7PErj5IO9TvnUAW6VC6vcyMRGUBdLbTHyB2QttOXR5Rad1Se1XaPs76probELni1Vhc6X1-un4_dflCWMBdrM0T9B22iPwSF4Y7Uy6yPYMYtj2GuCLnV1Ap2eys3cZkflT6RLXIyEmpOuK_RN6iVpyPaZFjPioFics1BSdQp3g_7kOaGbXTPHGVX2d47oDFro4ptzIGiz6zyPgqBknGk_epSoZVXByhhHqYoLaG9b6XI7-Rb2k8lomA1f0rcrOAhtVAZK31C2oVWvv8w1qtU6v3F39w2f4X5r |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BabelCalib%3A+A+Universal+Approach+to+Calibrating+Central+Cameras&rft.jtitle=arXiv.org&rft.au=Lochman%2C+Yaroslava&rft.au=Liepieshov%2C+Kostiantyn&rft.au=Chen%2C+Jianhui&rft.au=Perdoch%2C+Michal&rft.date=2021-10-28&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422 |