Towards Developing a Multilingual and Code-Mixed Visual Question Answering System by Knowledge Distillation

Pre-trained language-vision models have shown remarkable performance on the visual question answering (VQA) task. However, most pre-trained models are trained by only considering monolingual learning, especially the resource-rich language like English. Training such models for multilingual setups de...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Khan, Humair Raj, Gupta, Deepak, Ekbal, Asif
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 10.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pre-trained language-vision models have shown remarkable performance on the visual question answering (VQA) task. However, most pre-trained models are trained by only considering monolingual learning, especially the resource-rich language like English. Training such models for multilingual setups demand high computing resources and multilingual language-vision dataset which hinders their application in practice. To alleviate these challenges, we propose a knowledge distillation approach to extend an English language-vision model (teacher) into an equally effective multilingual and code-mixed model (student). Unlike the existing knowledge distillation methods, which only use the output from the last layer of the teacher network for distillation, our student model learns and imitates the teacher from multiple intermediate layers (language and vision encoders) with appropriately designed distillation objectives for incremental knowledge extraction. We also create the large-scale multilingual and code-mixed VQA dataset in eleven different language setups considering the multiple Indian and European languages. Experimental results and in-depth analysis show the effectiveness of the proposed VQA model over the pre-trained language-vision models on eleven diverse language setups.
AbstractList Pre-trained language-vision models have shown remarkable performance on the visual question answering (VQA) task. However, most pre-trained models are trained by only considering monolingual learning, especially the resource-rich language like English. Training such models for multilingual setups demand high computing resources and multilingual language-vision dataset which hinders their application in practice. To alleviate these challenges, we propose a knowledge distillation approach to extend an English language-vision model (teacher) into an equally effective multilingual and code-mixed model (student). Unlike the existing knowledge distillation methods, which only use the output from the last layer of the teacher network for distillation, our student model learns and imitates the teacher from multiple intermediate layers (language and vision encoders) with appropriately designed distillation objectives for incremental knowledge extraction. We also create the large-scale multilingual and code-mixed VQA dataset in eleven different language setups considering the multiple Indian and European languages. Experimental results and in-depth analysis show the effectiveness of the proposed VQA model over the pre-trained language-vision models on eleven diverse language setups.
Author Khan, Humair Raj
Gupta, Deepak
Ekbal, Asif
Author_xml – sequence: 1
  givenname: Humair
  surname: Khan
  middlename: Raj
  fullname: Khan, Humair Raj
– sequence: 2
  givenname: Deepak
  surname: Gupta
  fullname: Gupta, Deepak
– sequence: 3
  givenname: Asif
  surname: Ekbal
  fullname: Ekbal, Asif
BookMark eNqNjMsKwjAURIMo-PyHC64LMbG2LsUHgrgQi1uJ5FpSY6JNY_XvbcAPcDXDzJnpk7axBlukxzifROmUsS4ZOVdQStksYXHMe-SW2VqU0sEKX6jtQ5kcBOy9rpRuvBcahJGwtBKjvXqjhJNyIT14dJWyBhbG1ViG3fHjKrzD5QM7Y2uNMkdYqYbSWgR0SDpXoR2Ofjog4806W26jR2mf4e5cWF-apjqzOGE05YzO-X_UF_gTSv8
ContentType Paper
Copyright 2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Engineering Collection
Engineering Database
Access via ProQuest (Open Access)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_25720832093
IEDL.DBID 8FG
IngestDate Thu Oct 10 18:48:23 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_25720832093
OpenAccessLink https://www.proquest.com/docview/2572083209?pq-origsite=%requestingapplication%
PQID 2572083209
PQPubID 2050157
ParticipantIDs proquest_journals_2572083209
PublicationCentury 2000
PublicationDate 20210910
PublicationDateYYYYMMDD 2021-09-10
PublicationDate_xml – month: 09
  year: 2021
  text: 20210910
  day: 10
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2021
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.3551245
SecondaryResourceType preprint
Snippet Pre-trained language-vision models have shown remarkable performance on the visual question answering (VQA) task. However, most pre-trained models are trained...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Coders
Datasets
Distillation
English language
Language
Multilingualism
Questions
Teachers
Vision
Visual tasks
Title Towards Developing a Multilingual and Code-Mixed Visual Question Answering System by Knowledge Distillation
URI https://www.proquest.com/docview/2572083209
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFH_oiuDNT_yYI6DXYNd0bXYS3VqH0jFkym6jTVMYjnYuG-rFv92XtJ0HYcckEJKQ9_XL7-UB3GTS7vC0k1AWZx510QGhPOWCJsxG45IJVtaMjIbe4NV9mnQmFeCmKlplrRONok4LoTHyW7xaDroLjt29W3xQXTVKv65WJTR2wWo7vq-DLx4-bjAWx_PRY2b_1KyxHeEBWKN4IZeHsCPzI9gzlEuhjuF9bBirivQ3eUskJiYhVqeIr-M5wSif9IpU0mj2JVPyNlO612CUeJzkPlef5idBUv47TpJv8lxjZKSvpXdeUt1O4DoMxr0BrVc4re6Qmv7tmJ1CIy9yeQaE-0mbpyhEKIo6aRajJdllnhDo9svM9c6huW2mi-3Dl7DvaM6GLpFgN6GxWq7lFRrdVdIyJ9sC6yEYjl6wFf0Evy-djW8
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFD7ohuibV7xMDehrsDZt1z2JbM7q1uFDlb2VNklhbLRz2VD_vSdpOx-EvSYQkpBzyZfvywG4zaTl-sJNKUsyjzqYgFBf-JymzMLgknFW1owMR17w7ryO3XEFuKmKVln7ROOoRcE1Rn6HR8vGdMG2Og_zT6qrRunX1aqExjY0HYaxWivF-89rjMX22pgxs39u1sSO_j4035K5XBzAlswPYcdQLrk6gmlkGKuK9Na6JZIQI4jVEvFVMiN4yyfdQkgaTr6lIB8TpVsNRonbSR5z9WV-EiTlv-Mk_SGDGiMjPW29s5Lqdgw3_aeoG9B6hnF1hlT8t2J2Ao28yOUpEL-d3vsCjQhNUYtm8bYkO8zjHNN-mTneGbQ2jXS-ufsadoMoHMbDl9HgAvZszd_Q5RKsFjSWi5W8xAC8TK_MLv8CHwuNhg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Developing+a+Multilingual+and+Code-Mixed+Visual+Question+Answering+System+by+Knowledge+Distillation&rft.jtitle=arXiv.org&rft.au=Khan%2C+Humair+Raj&rft.au=Gupta%2C+Deepak&rft.au=Ekbal%2C+Asif&rft.date=2021-09-10&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422