Blow-up of nonnegative solutions of an abstract semilinear heat equation with convex source
We give a sufficient condition for non-existence of global nonnegative mild solutions of the Cauchy problem for the semilinear heat equation \(u' = Lu + f(u)\) in \(L^p(X,m)\) for \(p \in [1,\infty)\), where \((X,m)\) is a \(\sigma\)-finite measure space, \(L\) is the infinitesimal generator of...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
03.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We give a sufficient condition for non-existence of global nonnegative mild solutions of the Cauchy problem for the semilinear heat equation \(u' = Lu + f(u)\) in \(L^p(X,m)\) for \(p \in [1,\infty)\), where \((X,m)\) is a \(\sigma\)-finite measure space, \(L\) is the infinitesimal generator of a sub-Markovian strongly continuous semigroup of bounded linear operators in \(L^p(X,m)\), and \(f\) is a strictly increasing, convex, continuous function on \([0,\infty)\) with \(f(0) = 0\) and \(\int_1^\infty 1/f < \infty\). Since we make no further assumptions on the behaviour of the diffusion, our main result can be seen as being about the competition between the diffusion represented by \(L\) and the reaction represented by \(f\) in a general setting. We apply our result to Laplacians on manifolds, graphs, and, more generally, metric measure spaces with a heat kernel. In the process, we recover and extend some older as well as recent results in a unified framework. |
---|---|
AbstractList | We give a sufficient condition for non-existence of global nonnegative mild solutions of the Cauchy problem for the semilinear heat equation \(u' = Lu + f(u)\) in \(L^p(X,m)\) for \(p \in [1,\infty)\), where \((X,m)\) is a \(\sigma\)-finite measure space, \(L\) is the infinitesimal generator of a sub-Markovian strongly continuous semigroup of bounded linear operators in \(L^p(X,m)\), and \(f\) is a strictly increasing, convex, continuous function on \([0,\infty)\) with \(f(0) = 0\) and \(\int_1^\infty 1/f < \infty\). Since we make no further assumptions on the behaviour of the diffusion, our main result can be seen as being about the competition between the diffusion represented by \(L\) and the reaction represented by \(f\) in a general setting. We apply our result to Laplacians on manifolds, graphs, and, more generally, metric measure spaces with a heat kernel. In the process, we recover and extend some older as well as recent results in a unified framework. |
Author | Schmidt, Marcel Zimmermann, Ian Lenz, Daniel |
Author_xml | – sequence: 1 givenname: Daniel surname: Lenz fullname: Lenz, Daniel – sequence: 2 givenname: Marcel surname: Schmidt fullname: Schmidt, Marcel – sequence: 3 givenname: Ian surname: Zimmermann fullname: Zimmermann, Ian |
BookMark | eNqNy0EOgjAURdHGaCIqe_iJY5LaAsJUo3EBzhyQSj5Sgi3QFly-JXEBjt7gnrchS6UVLkjAOD9EWczYmoTGNJRSlh5ZkvCAPE6tniLXga7Aa4UvYeWIYHTrrNTKzEEoEE9jB1FaMPiWrVQoBqhRWMDeiRnCJG0NpVYjfvzbDSXuyKoSrcHwt1uyv17u51vUDbp3aGzReKd8KliSxmnOspzy_9QXS9xFlg |
ContentType | Paper |
Copyright | 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
ID | FETCH-proquest_journals_25646928903 |
IEDL.DBID | BENPR |
IngestDate | Thu Oct 10 17:06:34 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-proquest_journals_25646928903 |
OpenAccessLink | https://www.proquest.com/docview/2564692890?pq-origsite=%requestingapplication% |
PQID | 2564692890 |
PQPubID | 2050157 |
ParticipantIDs | proquest_journals_2564692890 |
PublicationCentury | 2000 |
PublicationDate | 20220503 |
PublicationDateYYYYMMDD | 2022-05-03 |
PublicationDate_xml | – month: 05 year: 2022 text: 20220503 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2022 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 3.393871 |
SecondaryResourceType | preprint |
Snippet | We give a sufficient condition for non-existence of global nonnegative mild solutions of the Cauchy problem for the semilinear heat equation \(u' = Lu + f(u)\)... |
SourceID | proquest |
SourceType | Aggregation Database |
SubjectTerms | Cauchy problems Continuity (mathematics) Linear operators Operators (mathematics) Thermodynamics |
Title | Blow-up of nonnegative solutions of an abstract semilinear heat equation with convex source |
URI | https://www.proquest.com/docview/2564692890 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFH64FsGbP9E5R0Cvwa1N2_QkTFqHsDFEYeBhpEkqgrZd26En_3bzum4ehB3Dg_zi8b68L99LAG6CQHHfYyk1OTIzCUqYUO4mAQ2ZNGgpJR-mWJw8mfrjF_Y49-Yt4Va1sspNTGwCtcolcuS3BppNJofXYnfFkuKvUXi72n6h0QHbMZnCwAJ7FE1nT1uWxfEDc2Z2_wXaBj3iQ7BnotDlEezp7Bj2G9GlrE7gdfSRf9FVQfKUZCg4eWte4SZbd0CDyIhIkI-QNan05zseC0VJMIYSvVw_1E2QTSWNgPybrOn4U7iOo-f7Md3MaNF6TbX4W6N7BpYZWJ8DYZJjvefA9ZjPAjUUQopQca0Msion1BfQ29VTd7f5Eg4cFPSjhM_tgVWXK31lYLZO-tDh8UO_3VHTmvxEv63UiQ0 |
link.rule.ids | 783,787,12777,21400,33385,33756,43612,43817 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60QezNJz6qLuh10Sab10motERtQ5EKBQ9hs7uRgiZpklJ_vjtpWg9Czwv7Yplv5ptvZwDuXFd6js0SqmNkpgMUP6aeFbvUZ0KjpRBeN8HPyaPQCd7Zy9SeNoRb2cgq1zaxNtQyE8iR32to1pEcpsUe8znFrlGYXW1aaOyCgaWqdPBl9Prh-G3DspiOq31m65-hrdFjcADGmOeqOIQdlR7BXi26FOUxfPS-siVd5CRLSIqCk8-6CjfZPAcc4CnhMfIRoiKl-p6hW8gLgjaUqPmqUDdBNpXUAvIfsqLjT-B20J88BXS9o6h5NWX0d0brFFp6YXUGhAkP_3s-WDZzmCu7nAvuS09JjazS9NU5dLbNdLF9-Ab2g8loGA2fw9dLaJso7kc5n9WBVlUs1JWG3Cq-bu71F9tCifA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blow-up+of+nonnegative+solutions+of+an+abstract+semilinear+heat+equation+with+convex+source&rft.jtitle=arXiv.org&rft.au=Lenz%2C+Daniel&rft.au=Schmidt%2C+Marcel&rft.au=Zimmermann%2C+Ian&rft.date=2022-05-03&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422 |