Blow-up of nonnegative solutions of an abstract semilinear heat equation with convex source

We give a sufficient condition for non-existence of global nonnegative mild solutions of the Cauchy problem for the semilinear heat equation \(u' = Lu + f(u)\) in \(L^p(X,m)\) for \(p \in [1,\infty)\), where \((X,m)\) is a \(\sigma\)-finite measure space, \(L\) is the infinitesimal generator of...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Lenz, Daniel, Schmidt, Marcel, Zimmermann, Ian
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 03.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We give a sufficient condition for non-existence of global nonnegative mild solutions of the Cauchy problem for the semilinear heat equation \(u' = Lu + f(u)\) in \(L^p(X,m)\) for \(p \in [1,\infty)\), where \((X,m)\) is a \(\sigma\)-finite measure space, \(L\) is the infinitesimal generator of a sub-Markovian strongly continuous semigroup of bounded linear operators in \(L^p(X,m)\), and \(f\) is a strictly increasing, convex, continuous function on \([0,\infty)\) with \(f(0) = 0\) and \(\int_1^\infty 1/f < \infty\). Since we make no further assumptions on the behaviour of the diffusion, our main result can be seen as being about the competition between the diffusion represented by \(L\) and the reaction represented by \(f\) in a general setting. We apply our result to Laplacians on manifolds, graphs, and, more generally, metric measure spaces with a heat kernel. In the process, we recover and extend some older as well as recent results in a unified framework.
AbstractList We give a sufficient condition for non-existence of global nonnegative mild solutions of the Cauchy problem for the semilinear heat equation \(u' = Lu + f(u)\) in \(L^p(X,m)\) for \(p \in [1,\infty)\), where \((X,m)\) is a \(\sigma\)-finite measure space, \(L\) is the infinitesimal generator of a sub-Markovian strongly continuous semigroup of bounded linear operators in \(L^p(X,m)\), and \(f\) is a strictly increasing, convex, continuous function on \([0,\infty)\) with \(f(0) = 0\) and \(\int_1^\infty 1/f < \infty\). Since we make no further assumptions on the behaviour of the diffusion, our main result can be seen as being about the competition between the diffusion represented by \(L\) and the reaction represented by \(f\) in a general setting. We apply our result to Laplacians on manifolds, graphs, and, more generally, metric measure spaces with a heat kernel. In the process, we recover and extend some older as well as recent results in a unified framework.
Author Schmidt, Marcel
Zimmermann, Ian
Lenz, Daniel
Author_xml – sequence: 1
  givenname: Daniel
  surname: Lenz
  fullname: Lenz, Daniel
– sequence: 2
  givenname: Marcel
  surname: Schmidt
  fullname: Schmidt, Marcel
– sequence: 3
  givenname: Ian
  surname: Zimmermann
  fullname: Zimmermann, Ian
BookMark eNqNy0EOgjAURdHGaCIqe_iJY5LaAsJUo3EBzhyQSj5Sgi3QFly-JXEBjt7gnrchS6UVLkjAOD9EWczYmoTGNJRSlh5ZkvCAPE6tniLXga7Aa4UvYeWIYHTrrNTKzEEoEE9jB1FaMPiWrVQoBqhRWMDeiRnCJG0NpVYjfvzbDSXuyKoSrcHwt1uyv17u51vUDbp3aGzReKd8KliSxmnOspzy_9QXS9xFlg
ContentType Paper
Copyright 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_25646928903
IEDL.DBID BENPR
IngestDate Thu Oct 10 17:06:34 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_25646928903
OpenAccessLink https://www.proquest.com/docview/2564692890?pq-origsite=%requestingapplication%
PQID 2564692890
PQPubID 2050157
ParticipantIDs proquest_journals_2564692890
PublicationCentury 2000
PublicationDate 20220503
PublicationDateYYYYMMDD 2022-05-03
PublicationDate_xml – month: 05
  year: 2022
  text: 20220503
  day: 03
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.393871
SecondaryResourceType preprint
Snippet We give a sufficient condition for non-existence of global nonnegative mild solutions of the Cauchy problem for the semilinear heat equation \(u' = Lu + f(u)\)...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Cauchy problems
Continuity (mathematics)
Linear operators
Operators (mathematics)
Thermodynamics
Title Blow-up of nonnegative solutions of an abstract semilinear heat equation with convex source
URI https://www.proquest.com/docview/2564692890
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFH64FsGbP9E5R0Cvwa1N2_QkTFqHsDFEYeBhpEkqgrZd26En_3bzum4ehB3Dg_zi8b68L99LAG6CQHHfYyk1OTIzCUqYUO4mAQ2ZNGgpJR-mWJw8mfrjF_Y49-Yt4Va1sspNTGwCtcolcuS3BppNJofXYnfFkuKvUXi72n6h0QHbMZnCwAJ7FE1nT1uWxfEDc2Z2_wXaBj3iQ7BnotDlEezp7Bj2G9GlrE7gdfSRf9FVQfKUZCg4eWte4SZbd0CDyIhIkI-QNan05zseC0VJMIYSvVw_1E2QTSWNgPybrOn4U7iOo-f7Md3MaNF6TbX4W6N7BpYZWJ8DYZJjvefA9ZjPAjUUQopQca0Msion1BfQ29VTd7f5Eg4cFPSjhM_tgVWXK31lYLZO-tDh8UO_3VHTmvxEv63UiQ0
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60QezNJz6qLuh10Sab10motERtQ5EKBQ9hs7uRgiZpklJ_vjtpWg9Czwv7Yplv5ptvZwDuXFd6js0SqmNkpgMUP6aeFbvUZ0KjpRBeN8HPyaPQCd7Zy9SeNoRb2cgq1zaxNtQyE8iR32to1pEcpsUe8znFrlGYXW1aaOyCgaWqdPBl9Prh-G3DspiOq31m65-hrdFjcADGmOeqOIQdlR7BXi26FOUxfPS-siVd5CRLSIqCk8-6CjfZPAcc4CnhMfIRoiKl-p6hW8gLgjaUqPmqUDdBNpXUAvIfsqLjT-B20J88BXS9o6h5NWX0d0brFFp6YXUGhAkP_3s-WDZzmCu7nAvuS09JjazS9NU5dLbNdLF9-Ab2g8loGA2fw9dLaJso7kc5n9WBVlUs1JWG3Cq-bu71F9tCifA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blow-up+of+nonnegative+solutions+of+an+abstract+semilinear+heat+equation+with+convex+source&rft.jtitle=arXiv.org&rft.au=Lenz%2C+Daniel&rft.au=Schmidt%2C+Marcel&rft.au=Zimmermann%2C+Ian&rft.date=2022-05-03&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422