A Surrogate-Assisted Uncertainty-Aware Bayesian Validation Framework and its Application to Coupling Free Flow and Porous-Medium Flow

Existing model validation studies in geoscience often disregard or partly account for uncertainties in observations, model choices, and input parameters. In this work, we develop a statistical framework that incorporates a probabilistic modeling technique using a fully Bayesian approach to perform a...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Mohammadi, Farid, Eggenweiler, Elissa, Flemisch, Bernd, Oladyshkin, Sergey, Rybak, Iryna, Schneider, Martin, Weishaupt, Kilian
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 14.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Existing model validation studies in geoscience often disregard or partly account for uncertainties in observations, model choices, and input parameters. In this work, we develop a statistical framework that incorporates a probabilistic modeling technique using a fully Bayesian approach to perform a quantitative uncertainty-aware validation. A Bayesian perspective on a validation task yields an optimal bias-variance trade-off against the reference data. It provides an integrative metric for model validation that incorporates parameter and conceptual uncertainty. Additionally, a surrogate modeling technique, namely Bayesian Sparse Polynomial Chaos Expansion, is employed to accelerate the computationally demanding Bayesian calibration and validation. We apply this validation framework to perform a comparative evaluation of models for coupling a free flow with a porous-medium flow. The correct choice of interface conditions and proper model parameters for such coupled flow systems is crucial for physically consistent modeling and accurate numerical simulations of applications. We develop a benchmark scenario that uses the Stokes equations to describe the free flow and considers different models for the porous-medium compartment and the coupling at the fluid--porous interface. These models include a porous-medium model using Darcy's law at the representative elementary volume scale with classical or generalized interface conditions and a pore-network model with its related coupling approach. We study the coupled flow problems' behaviors considering a benchmark case, where a pore-scale resolved model provides the reference solution. With the suggested framework, we perform sensitivity analysis, quantify the parametric uncertainties, demonstrate each model's predictive capabilities, and make a probabilistic model comparison.
AbstractList Existing model validation studies in geoscience often disregard or partly account for uncertainties in observations, model choices, and input parameters. In this work, we develop a statistical framework that incorporates a probabilistic modeling technique using a fully Bayesian approach to perform a quantitative uncertainty-aware validation. A Bayesian perspective on a validation task yields an optimal bias-variance trade-off against the reference data. It provides an integrative metric for model validation that incorporates parameter and conceptual uncertainty. Additionally, a surrogate modeling technique, namely Bayesian Sparse Polynomial Chaos Expansion, is employed to accelerate the computationally demanding Bayesian calibration and validation. We apply this validation framework to perform a comparative evaluation of models for coupling a free flow with a porous-medium flow. The correct choice of interface conditions and proper model parameters for such coupled flow systems is crucial for physically consistent modeling and accurate numerical simulations of applications. We develop a benchmark scenario that uses the Stokes equations to describe the free flow and considers different models for the porous-medium compartment and the coupling at the fluid--porous interface. These models include a porous-medium model using Darcy's law at the representative elementary volume scale with classical or generalized interface conditions and a pore-network model with its related coupling approach. We study the coupled flow problems' behaviors considering a benchmark case, where a pore-scale resolved model provides the reference solution. With the suggested framework, we perform sensitivity analysis, quantify the parametric uncertainties, demonstrate each model's predictive capabilities, and make a probabilistic model comparison.
Author Eggenweiler, Elissa
Flemisch, Bernd
Oladyshkin, Sergey
Mohammadi, Farid
Schneider, Martin
Rybak, Iryna
Weishaupt, Kilian
Author_xml – sequence: 1
  givenname: Farid
  surname: Mohammadi
  fullname: Mohammadi, Farid
– sequence: 2
  givenname: Elissa
  surname: Eggenweiler
  fullname: Eggenweiler, Elissa
– sequence: 3
  givenname: Bernd
  surname: Flemisch
  fullname: Flemisch, Bernd
– sequence: 4
  givenname: Sergey
  surname: Oladyshkin
  fullname: Oladyshkin, Sergey
– sequence: 5
  givenname: Iryna
  surname: Rybak
  fullname: Rybak, Iryna
– sequence: 6
  givenname: Martin
  surname: Schneider
  fullname: Schneider, Martin
– sequence: 7
  givenname: Kilian
  surname: Weishaupt
  fullname: Weishaupt, Kilian
BookMark eNqNit1Kw0AQRhdRsGrfYcDrhbhp0t7GYvBGEPy5LUMzlq3pTJzZJfQBfG9D9QG8-jjfOVfunIXpzM1CWd751SKESzc32xdFEeplqKpy5r4beMmqssNEvjGLlqiDN96SJoycjr4ZUQnu8UgWkeEd-9hhisLQKh5oFP0E5A5iMmiGoY_bX5sE1pIn5t1UEkHby3gqn0Ulm3-iLubD6b5xFx_YG83_9trdtg-v60c_qHxlsrTZS1ae1CZUi2q5quuiLv9X_QCPu1Qi
ContentType Paper
Copyright 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_25457866063
IEDL.DBID 8FG
IngestDate Thu Oct 10 15:45:54 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_25457866063
OpenAccessLink https://www.proquest.com/docview/2545786606?pq-origsite=%requestingapplication%
PQID 2545786606
PQPubID 2050157
ParticipantIDs proquest_journals_2545786606
PublicationCentury 2000
PublicationDate 20220614
PublicationDateYYYYMMDD 2022-06-14
PublicationDate_xml – month: 06
  year: 2022
  text: 20220614
  day: 14
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.4014444
SecondaryResourceType preprint
Snippet Existing model validation studies in geoscience often disregard or partly account for uncertainties in observations, model choices, and input parameters. In...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Bayesian analysis
Benchmarks
Computational fluid dynamics
Coupling
Darcys law
Fluid flow
Free flow
Mathematical models
Model reduction
Parameter uncertainty
Polynomials
Porous media
Statistical analysis
Title A Surrogate-Assisted Uncertainty-Aware Bayesian Validation Framework and its Application to Coupling Free Flow and Porous-Medium Flow
URI https://www.proquest.com/docview/2545786606
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60RfDmEx-1BPQaXLNNdvckbelahJaiVnor6e6sCHZT90HpxZv_2yRu7UHoMckQwmSYxzczDMCNnyRMcObROOCctuLIodKJOJVceAHKJOCJgQYGQ9Eftx4nfFIBbnlVVrnWiVZRxyoyGPmtDmS0cAntb98vPqmZGmWyq9UIjV2o3zHPM8GXHz78YSxMeNpjdv-pWWs7wgOoj-QCs0PYwfQI9mzJZZQfw3ebPJdZpgyORTWXDL9jMtafYJP0xYq2lzJD0pErNJ2O5FW7zL8TkEi4LqkiMo3Je5GT9iYRTQpFuqo0rbZvmhKRhB9qaSlHKtORPjXZmXJut0_gOuy9dPt0_fZpJV35dMML9xRqqUrxDIgQjM04c2a-MM21GOjYDbkTIzquixE_h8a2my62H1_CPjOF_2ZqT6sBtSIr8Uqb42LWtDxvQr3TG46e9Grw1fsBMhGXGA
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60RfTmEx9VA3oNLtlNtnuSWlyrtqVgK72VdHdWBN3UfVD6A_zfJnFrD0KvSQhhMszjm_kYgOtmkjDBmU_jgHPqxZFDpRNxKrnwA5RJwBMDDfT6ojPynsZ8XAFuedVWubSJ1lDHKjIY-Y1OZLRyCR1v386-qJkaZaqr1QiNTah7rvbVhikePvxhLEz4OmJ2_5lZ6zvCXagP5AyzPdjAdB-2bMtllB_Ad4u8lFmmDI5FtZSMvGMy0p9gi_TFgrbmMkNyJxdomI7kVYfMvxOQSLhsqSIyjcl7kZPWqhBNCkXaqjRU2zd9EpGEH2puTw5UpjN9aqoz5addPoSr8H7Y7tDl2yeVduWTlSzcI6ilKsVjIEIwNuXMmTaFIddioHM35E6M6LguRvwEGutuOl2_fQnbnWGvO-k-9p_PYIcZEoCZ4OM1oFZkJZ5r11xML6z8fwANRZcv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Surrogate-Assisted+Uncertainty-Aware+Bayesian+Validation+Framework+and+its+Application+to+Coupling+Free+Flow+and+Porous-Medium+Flow&rft.jtitle=arXiv.org&rft.au=Mohammadi%2C+Farid&rft.au=Eggenweiler%2C+Elissa&rft.au=Flemisch%2C+Bernd&rft.au=Oladyshkin%2C+Sergey&rft.date=2022-06-14&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422