A Surrogate-Assisted Uncertainty-Aware Bayesian Validation Framework and its Application to Coupling Free Flow and Porous-Medium Flow
Existing model validation studies in geoscience often disregard or partly account for uncertainties in observations, model choices, and input parameters. In this work, we develop a statistical framework that incorporates a probabilistic modeling technique using a fully Bayesian approach to perform a...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
14.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Existing model validation studies in geoscience often disregard or partly account for uncertainties in observations, model choices, and input parameters. In this work, we develop a statistical framework that incorporates a probabilistic modeling technique using a fully Bayesian approach to perform a quantitative uncertainty-aware validation. A Bayesian perspective on a validation task yields an optimal bias-variance trade-off against the reference data. It provides an integrative metric for model validation that incorporates parameter and conceptual uncertainty. Additionally, a surrogate modeling technique, namely Bayesian Sparse Polynomial Chaos Expansion, is employed to accelerate the computationally demanding Bayesian calibration and validation. We apply this validation framework to perform a comparative evaluation of models for coupling a free flow with a porous-medium flow. The correct choice of interface conditions and proper model parameters for such coupled flow systems is crucial for physically consistent modeling and accurate numerical simulations of applications. We develop a benchmark scenario that uses the Stokes equations to describe the free flow and considers different models for the porous-medium compartment and the coupling at the fluid--porous interface. These models include a porous-medium model using Darcy's law at the representative elementary volume scale with classical or generalized interface conditions and a pore-network model with its related coupling approach. We study the coupled flow problems' behaviors considering a benchmark case, where a pore-scale resolved model provides the reference solution. With the suggested framework, we perform sensitivity analysis, quantify the parametric uncertainties, demonstrate each model's predictive capabilities, and make a probabilistic model comparison. |
---|---|
AbstractList | Existing model validation studies in geoscience often disregard or partly account for uncertainties in observations, model choices, and input parameters. In this work, we develop a statistical framework that incorporates a probabilistic modeling technique using a fully Bayesian approach to perform a quantitative uncertainty-aware validation. A Bayesian perspective on a validation task yields an optimal bias-variance trade-off against the reference data. It provides an integrative metric for model validation that incorporates parameter and conceptual uncertainty. Additionally, a surrogate modeling technique, namely Bayesian Sparse Polynomial Chaos Expansion, is employed to accelerate the computationally demanding Bayesian calibration and validation. We apply this validation framework to perform a comparative evaluation of models for coupling a free flow with a porous-medium flow. The correct choice of interface conditions and proper model parameters for such coupled flow systems is crucial for physically consistent modeling and accurate numerical simulations of applications. We develop a benchmark scenario that uses the Stokes equations to describe the free flow and considers different models for the porous-medium compartment and the coupling at the fluid--porous interface. These models include a porous-medium model using Darcy's law at the representative elementary volume scale with classical or generalized interface conditions and a pore-network model with its related coupling approach. We study the coupled flow problems' behaviors considering a benchmark case, where a pore-scale resolved model provides the reference solution. With the suggested framework, we perform sensitivity analysis, quantify the parametric uncertainties, demonstrate each model's predictive capabilities, and make a probabilistic model comparison. |
Author | Eggenweiler, Elissa Flemisch, Bernd Oladyshkin, Sergey Mohammadi, Farid Schneider, Martin Rybak, Iryna Weishaupt, Kilian |
Author_xml | – sequence: 1 givenname: Farid surname: Mohammadi fullname: Mohammadi, Farid – sequence: 2 givenname: Elissa surname: Eggenweiler fullname: Eggenweiler, Elissa – sequence: 3 givenname: Bernd surname: Flemisch fullname: Flemisch, Bernd – sequence: 4 givenname: Sergey surname: Oladyshkin fullname: Oladyshkin, Sergey – sequence: 5 givenname: Iryna surname: Rybak fullname: Rybak, Iryna – sequence: 6 givenname: Martin surname: Schneider fullname: Schneider, Martin – sequence: 7 givenname: Kilian surname: Weishaupt fullname: Weishaupt, Kilian |
BookMark | eNqNit1Kw0AQRhdRsGrfYcDrhbhp0t7GYvBGEPy5LUMzlq3pTJzZJfQBfG9D9QG8-jjfOVfunIXpzM1CWd751SKESzc32xdFEeplqKpy5r4beMmqssNEvjGLlqiDN96SJoycjr4ZUQnu8UgWkeEd-9hhisLQKh5oFP0E5A5iMmiGoY_bX5sE1pIn5t1UEkHby3gqn0Ulm3-iLubD6b5xFx_YG83_9trdtg-v60c_qHxlsrTZS1ae1CZUi2q5quuiLv9X_QCPu1Qi |
ContentType | Paper |
Copyright | 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
ID | FETCH-proquest_journals_25457866063 |
IEDL.DBID | 8FG |
IngestDate | Thu Oct 10 15:45:54 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-proquest_journals_25457866063 |
OpenAccessLink | https://www.proquest.com/docview/2545786606?pq-origsite=%requestingapplication% |
PQID | 2545786606 |
PQPubID | 2050157 |
ParticipantIDs | proquest_journals_2545786606 |
PublicationCentury | 2000 |
PublicationDate | 20220614 |
PublicationDateYYYYMMDD | 2022-06-14 |
PublicationDate_xml | – month: 06 year: 2022 text: 20220614 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2022 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 3.4014444 |
SecondaryResourceType | preprint |
Snippet | Existing model validation studies in geoscience often disregard or partly account for uncertainties in observations, model choices, and input parameters. In... |
SourceID | proquest |
SourceType | Aggregation Database |
SubjectTerms | Bayesian analysis Benchmarks Computational fluid dynamics Coupling Darcys law Fluid flow Free flow Mathematical models Model reduction Parameter uncertainty Polynomials Porous media Statistical analysis |
Title | A Surrogate-Assisted Uncertainty-Aware Bayesian Validation Framework and its Application to Coupling Free Flow and Porous-Medium Flow |
URI | https://www.proquest.com/docview/2545786606 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60RfDmEx-1BPQaXLNNdvckbelahJaiVnor6e6sCHZT90HpxZv_2yRu7UHoMckQwmSYxzczDMCNnyRMcObROOCctuLIodKJOJVceAHKJOCJgQYGQ9Eftx4nfFIBbnlVVrnWiVZRxyoyGPmtDmS0cAntb98vPqmZGmWyq9UIjV2o3zHPM8GXHz78YSxMeNpjdv-pWWs7wgOoj-QCs0PYwfQI9mzJZZQfw3ebPJdZpgyORTWXDL9jMtafYJP0xYq2lzJD0pErNJ2O5FW7zL8TkEi4LqkiMo3Je5GT9iYRTQpFuqo0rbZvmhKRhB9qaSlHKtORPjXZmXJut0_gOuy9dPt0_fZpJV35dMML9xRqqUrxDIgQjM04c2a-MM21GOjYDbkTIzquixE_h8a2my62H1_CPjOF_2ZqT6sBtSIr8Uqb42LWtDxvQr3TG46e9Grw1fsBMhGXGA |
link.rule.ids | 783,787,12777,21400,33385,33756,43612,43817 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60RfTmEx9VA3oNLtlNtnuSWlyrtqVgK72VdHdWBN3UfVD6A_zfJnFrD0KvSQhhMszjm_kYgOtmkjDBmU_jgHPqxZFDpRNxKrnwA5RJwBMDDfT6ojPynsZ8XAFuedVWubSJ1lDHKjIY-Y1OZLRyCR1v386-qJkaZaqr1QiNTah7rvbVhikePvxhLEz4OmJ2_5lZ6zvCXagP5AyzPdjAdB-2bMtllB_Ad4u8lFmmDI5FtZSMvGMy0p9gi_TFgrbmMkNyJxdomI7kVYfMvxOQSLhsqSIyjcl7kZPWqhBNCkXaqjRU2zd9EpGEH2puTw5UpjN9aqoz5addPoSr8H7Y7tDl2yeVduWTlSzcI6ilKsVjIEIwNuXMmTaFIddioHM35E6M6LguRvwEGutuOl2_fQnbnWGvO-k-9p_PYIcZEoCZ4OM1oFZkJZ5r11xML6z8fwANRZcv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Surrogate-Assisted+Uncertainty-Aware+Bayesian+Validation+Framework+and+its+Application+to+Coupling+Free+Flow+and+Porous-Medium+Flow&rft.jtitle=arXiv.org&rft.au=Mohammadi%2C+Farid&rft.au=Eggenweiler%2C+Elissa&rft.au=Flemisch%2C+Bernd&rft.au=Oladyshkin%2C+Sergey&rft.date=2022-06-14&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422 |