Generative Model Adversarial Training for Deep Compressed Sensing

Deep compressed sensing assumes the data has sparse representation in a latent space, i.e., it is intrinsically of low-dimension. The original data is assumed to be mapped from a low-dimensional space through a low-to-high-dimensional generator. In this work, we propound how to design such a low-to-...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Author Esmaeili, Ashkan
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 20.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep compressed sensing assumes the data has sparse representation in a latent space, i.e., it is intrinsically of low-dimension. The original data is assumed to be mapped from a low-dimensional space through a low-to-high-dimensional generator. In this work, we propound how to design such a low-to-high dimensional deep learning-based generator suiting for compressed sensing, while satisfying robustness to universal adversarial perturbations in the latent domain. We also justify why the noise is considered in the latent space. The work is also buttressed with theoretical analysis on the robustness of the trained generator to adversarial perturbations. Experiments on real-world datasets are provided to substantiate the efficacy of the proposed \emph{generative model adversarial training for deep compressed sensing.}
AbstractList Deep compressed sensing assumes the data has sparse representation in a latent space, i.e., it is intrinsically of low-dimension. The original data is assumed to be mapped from a low-dimensional space through a low-to-high-dimensional generator. In this work, we propound how to design such a low-to-high dimensional deep learning-based generator suiting for compressed sensing, while satisfying robustness to universal adversarial perturbations in the latent domain. We also justify why the noise is considered in the latent space. The work is also buttressed with theoretical analysis on the robustness of the trained generator to adversarial perturbations. Experiments on real-world datasets are provided to substantiate the efficacy of the proposed \emph{generative model adversarial training for deep compressed sensing.}
Author Esmaeili, Ashkan
Author_xml – sequence: 1
  givenname: Ashkan
  surname: Esmaeili
  fullname: Esmaeili, Ashkan
BookMark eNqNyr0OgjAUQOHGaCIq79DEmaTeguJI8G9xgp004WJKsMV7geeXwQdwOsN3NmLpvMOFCEDrQ5TGAGsRMrdKKTieIEl0ILI7OiQz2Anl09fYyayekNiQNZ0syVhn3Us2nuQFsZe5f_eEzFjLAh3PthOrxnSM4a9bsb9dy_wR9eQ_I_JQtX4kN1MFSazPCiDV-r_rC7YqOwY
ContentType Paper
Copyright 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_25439022833
IEDL.DBID BENPR
IngestDate Thu Oct 10 16:44:39 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_25439022833
OpenAccessLink https://www.proquest.com/docview/2543902283?pq-origsite=%requestingapplication%
PQID 2543902283
PQPubID 2050157
ParticipantIDs proquest_journals_2543902283
PublicationCentury 2000
PublicationDate 20210620
PublicationDateYYYYMMDD 2021-06-20
PublicationDate_xml – month: 06
  year: 2021
  text: 20210620
  day: 20
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2021
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.3332658
SecondaryResourceType preprint
Snippet Deep compressed sensing assumes the data has sparse representation in a latent space, i.e., it is intrinsically of low-dimension. The original data is assumed...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Buttresses
Perturbation
Robustness
Training
Title Generative Model Adversarial Training for Deep Compressed Sensing
URI https://www.proquest.com/docview/2543902283
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB7sLoI3n_ioJaDXxd1sut2eStVdi9BStEJvJdkkXqSu3Xr1tzsTUz0IPYZAQsLMfJnJzHwA11xxqREXImm5QAcl6UYICzZC4TLoHtiql1A18niSjV7E47w79wG3xqdVbmyiM9T6vaIY-Q0Vbfdds5ZB_RERaxT9rnoKjRaEHD2FOIDwtphMn36jLDzr4Zs5_WdoHXqU-xBOZW1WB7Bjloew65Iuq-YIhj89n8ngMOIke2OOHrmRJBRs5skbGD4r2b0xNSPddb2-NXumvPPl6zFclcXsbhRt9l142WgWfydJTyBAJ9-cAqtiYWyF4GvzRGidK6Gs1DIRtm_TRPEzaG9b6Xz79AXsccrFiDPUijYE69WnuUQwXasOtPLyoePvDUfjr-IbHj1_Sg
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgFWI3nuIxIBJcI9Y067YT4rGpwFZNUKTdqrRJuKBR1vH_Z4cMDkg7R0qUyPZnO7Y_gCtRCKURF7iyQmKAEnY4woLlKFwGwwNbdkPqRh6ncfImn6adqU-41b6scmUTnaHWnyXlyK-pabvvhrXcVF-cWKPod9VTaGxCQKOqMPgK7gbp5OU3yyLiLvrM0T9D69BjuAPBRFVmvgsbZrYHW67osqz34fZn5jMZHEacZB_M0SPXioSCZZ68gaFbyR6MqRjprpv1rdkr1Z3P3g_gcjjI7hO-Ojf3slHnfzeJDqGBQb45Ala2pbElgq_thVLrXiELq7QKpe3bKCzEMbTW7XSyfvkCtpNsPMpHj-nzKTQF1WW0Y9SQFjQW829zhsC6KM796y0BSheALQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generative+Model+Adversarial+Training+for+Deep+Compressed+Sensing&rft.jtitle=arXiv.org&rft.au=Esmaeili%2C+Ashkan&rft.date=2021-06-20&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422