Biologically Inspired Semantic Lateral Connectivity for Convolutional Neural Networks
Lateral connections play an important role for sensory processing in visual cortex by supporting discriminable neuronal responses even to highly similar features. In the present work, we show that establishing a biologically inspired Mexican hat lateral connectivity profile along the filter domain c...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
20.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lateral connections play an important role for sensory processing in visual cortex by supporting discriminable neuronal responses even to highly similar features. In the present work, we show that establishing a biologically inspired Mexican hat lateral connectivity profile along the filter domain can significantly improve the classification accuracy of a variety of lightweight convolutional neural networks without the addition of trainable network parameters. Moreover, we demonstrate that it is possible to analytically determine the stationary distribution of modulated filter activations and thereby avoid using recurrence for modeling temporal dynamics. We furthermore reveal that the Mexican hat connectivity profile has the effect of ordering filters in a sequence resembling the topographic organization of feature selectivity in early visual cortex. In an ordered filter sequence, this profile then sharpens the filters' tuning curves. |
---|---|
AbstractList | Lateral connections play an important role for sensory processing in visual cortex by supporting discriminable neuronal responses even to highly similar features. In the present work, we show that establishing a biologically inspired Mexican hat lateral connectivity profile along the filter domain can significantly improve the classification accuracy of a variety of lightweight convolutional neural networks without the addition of trainable network parameters. Moreover, we demonstrate that it is possible to analytically determine the stationary distribution of modulated filter activations and thereby avoid using recurrence for modeling temporal dynamics. We furthermore reveal that the Mexican hat connectivity profile has the effect of ordering filters in a sequence resembling the topographic organization of feature selectivity in early visual cortex. In an ordered filter sequence, this profile then sharpens the filters' tuning curves. |
Author | Senden, Mario Sebők, Dávid Weidler, Tonio Driessens, Kurt Denman, Quinton Weiss, Gerhard Lehnen, Julian |
Author_xml | – sequence: 1 givenname: Tonio surname: Weidler fullname: Weidler, Tonio – sequence: 2 givenname: Julian surname: Lehnen fullname: Lehnen, Julian – sequence: 3 givenname: Quinton surname: Denman fullname: Denman, Quinton – sequence: 4 givenname: Dávid surname: Sebők fullname: Sebők, Dávid – sequence: 5 givenname: Gerhard surname: Weiss fullname: Weiss, Gerhard – sequence: 6 givenname: Kurt surname: Driessens fullname: Driessens, Kurt – sequence: 7 givenname: Mario surname: Senden fullname: Senden, Mario |
BookMark | eNqNi00KwjAYBYMoWLV3CLguxKSxri2KgrhR1yXUVFJjvpqfSm9vFQ_gauDNmwkaGjBygCLK2CJZpZSOUexcTQihy4xyziJ0WSvQcFOl0LrDe-MaZeUVn-RDGK9KfBBeWqFxDsbI0qtW-Q5XYD9DCzp4BabXRxnsF_4F9u5maFQJ7WT84xTNt5tzvksaC88gnS9qCLYPXUE5IzSlPGPsv9cboXBDYg |
ContentType | Paper |
Copyright | 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Engineering Collection Engineering Database Access via ProQuest (Open Access) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
ID | FETCH-proquest_journals_25302425733 |
IEDL.DBID | 8FG |
IngestDate | Thu Oct 10 19:19:59 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-proquest_journals_25302425733 |
OpenAccessLink | https://www.proquest.com/docview/2530242573?pq-origsite=%requestingapplication% |
PQID | 2530242573 |
PQPubID | 2050157 |
ParticipantIDs | proquest_journals_2530242573 |
PublicationCentury | 2000 |
PublicationDate | 20210520 |
PublicationDateYYYYMMDD | 2021-05-20 |
PublicationDate_xml | – month: 05 year: 2021 text: 20210520 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2021 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 3.334199 |
SecondaryResourceType | preprint |
Snippet | Lateral connections play an important role for sensory processing in visual cortex by supporting discriminable neuronal responses even to highly similar... |
SourceID | proquest |
SourceType | Aggregation Database |
SubjectTerms | Artificial neural networks Connectivity Neural networks Selectivity |
Title | Biologically Inspired Semantic Lateral Connectivity for Convolutional Neural Networks |
URI | https://www.proquest.com/docview/2530242573 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQMbc0MALFq24qsPega5IE7O4kpZmZ6CYmJ1laJFuYJBmbgTY4-_qZeYSaeEWYRkAH3IqhyyphZSK4oE7JTwaNkesbga63ASUwY_uCQl3QrVGg2VXoFRrMDKyGRubmoM6XhZs7fIzFyMwc2GI2xihmwXWHmyADa0BiQWqREANTap4wAzt4yWVysQhDKOQaSFAg5VQqeOaBprxTUxSCU3OBns1MVvBJBG0OzlEAL0VJhlzyoABsYoIEyqAJBigNOl0DTIGXcxeLMii7uYY4e-jC3BIPTS3F8Qi_GYsxsAC7_akSDArGoJO2UgwMkswskkxSLcyANXkKkDYxMjC1SE5KM5ZkkMFnkhR-aWkGLiPQ6gwDU2A-kWFgKSkqTZUFVq8lSXLgMJRjYHVy9QsIAvJ861wB_3yF2g |
link.rule.ids | 783,787,12777,21400,33385,33756,43612,43817 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60RfTmEx9VA3oNLkk23Z48iOtWt0Wwhd6WTTYFodbarYL_3pk01YPQUyCBkMdkJjP5Jh_AdbsTCdpX7tB74Mqgu2PGWvHSmk5iE2WkpgTnXl9nQ_U4ikch4FYHWOVKJ3pFXb1bipHfCKK3IQGTt7MPTqxR9LoaKDQ2oakk2mrKFE8ffmMsQrfxxiz_qVlvO9JdaD6XMzffgw033YctD7m09QEMlzSQtEiTb9ad0pO3q9iLe8PJvlqWl5QcPGEeimKXJA8Mr5hU8RUEBpvpdw1feDh3fQhX6f3gLuOrsRRBWurib27yCBro9rtjYJJ-2qqiyOjEKJdotOQVlkpEcWLNWJ5Aa11Pp-ubL2E7G_TyIu_2n85gRxBSI4rxzLSgsZh_unM0tQtz4dfzB_7ohfE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biologically+Inspired+Semantic+Lateral+Connectivity+for+Convolutional+Neural+Networks&rft.jtitle=arXiv.org&rft.au=Weidler%2C+Tonio&rft.au=Lehnen%2C+Julian&rft.au=Denman%2C+Quinton&rft.au=Seb%C5%91k%2C+D%C3%A1vid&rft.date=2021-05-20&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422 |