Biologically Inspired Semantic Lateral Connectivity for Convolutional Neural Networks

Lateral connections play an important role for sensory processing in visual cortex by supporting discriminable neuronal responses even to highly similar features. In the present work, we show that establishing a biologically inspired Mexican hat lateral connectivity profile along the filter domain c...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Weidler, Tonio, Lehnen, Julian, Denman, Quinton, Sebők, Dávid, Weiss, Gerhard, Driessens, Kurt, Senden, Mario
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 20.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lateral connections play an important role for sensory processing in visual cortex by supporting discriminable neuronal responses even to highly similar features. In the present work, we show that establishing a biologically inspired Mexican hat lateral connectivity profile along the filter domain can significantly improve the classification accuracy of a variety of lightweight convolutional neural networks without the addition of trainable network parameters. Moreover, we demonstrate that it is possible to analytically determine the stationary distribution of modulated filter activations and thereby avoid using recurrence for modeling temporal dynamics. We furthermore reveal that the Mexican hat connectivity profile has the effect of ordering filters in a sequence resembling the topographic organization of feature selectivity in early visual cortex. In an ordered filter sequence, this profile then sharpens the filters' tuning curves.
AbstractList Lateral connections play an important role for sensory processing in visual cortex by supporting discriminable neuronal responses even to highly similar features. In the present work, we show that establishing a biologically inspired Mexican hat lateral connectivity profile along the filter domain can significantly improve the classification accuracy of a variety of lightweight convolutional neural networks without the addition of trainable network parameters. Moreover, we demonstrate that it is possible to analytically determine the stationary distribution of modulated filter activations and thereby avoid using recurrence for modeling temporal dynamics. We furthermore reveal that the Mexican hat connectivity profile has the effect of ordering filters in a sequence resembling the topographic organization of feature selectivity in early visual cortex. In an ordered filter sequence, this profile then sharpens the filters' tuning curves.
Author Senden, Mario
Sebők, Dávid
Weidler, Tonio
Driessens, Kurt
Denman, Quinton
Weiss, Gerhard
Lehnen, Julian
Author_xml – sequence: 1
  givenname: Tonio
  surname: Weidler
  fullname: Weidler, Tonio
– sequence: 2
  givenname: Julian
  surname: Lehnen
  fullname: Lehnen, Julian
– sequence: 3
  givenname: Quinton
  surname: Denman
  fullname: Denman, Quinton
– sequence: 4
  givenname: Dávid
  surname: Sebők
  fullname: Sebők, Dávid
– sequence: 5
  givenname: Gerhard
  surname: Weiss
  fullname: Weiss, Gerhard
– sequence: 6
  givenname: Kurt
  surname: Driessens
  fullname: Driessens, Kurt
– sequence: 7
  givenname: Mario
  surname: Senden
  fullname: Senden, Mario
BookMark eNqNi00KwjAYBYMoWLV3CLguxKSxri2KgrhR1yXUVFJjvpqfSm9vFQ_gauDNmwkaGjBygCLK2CJZpZSOUexcTQihy4xyziJ0WSvQcFOl0LrDe-MaZeUVn-RDGK9KfBBeWqFxDsbI0qtW-Q5XYD9DCzp4BabXRxnsF_4F9u5maFQJ7WT84xTNt5tzvksaC88gnS9qCLYPXUE5IzSlPGPsv9cboXBDYg
ContentType Paper
Copyright 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Engineering Collection
Engineering Database
Access via ProQuest (Open Access)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_25302425733
IEDL.DBID 8FG
IngestDate Thu Oct 10 19:19:59 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_25302425733
OpenAccessLink https://www.proquest.com/docview/2530242573?pq-origsite=%requestingapplication%
PQID 2530242573
PQPubID 2050157
ParticipantIDs proquest_journals_2530242573
PublicationCentury 2000
PublicationDate 20210520
PublicationDateYYYYMMDD 2021-05-20
PublicationDate_xml – month: 05
  year: 2021
  text: 20210520
  day: 20
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2021
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.334199
SecondaryResourceType preprint
Snippet Lateral connections play an important role for sensory processing in visual cortex by supporting discriminable neuronal responses even to highly similar...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Artificial neural networks
Connectivity
Neural networks
Selectivity
Title Biologically Inspired Semantic Lateral Connectivity for Convolutional Neural Networks
URI https://www.proquest.com/docview/2530242573
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQMbc0MALFq24qsPega5IE7O4kpZmZ6CYmJ1laJFuYJBmbgTY4-_qZeYSaeEWYRkAH3IqhyyphZSK4oE7JTwaNkesbga63ASUwY_uCQl3QrVGg2VXoFRrMDKyGRubmoM6XhZs7fIzFyMwc2GI2xihmwXWHmyADa0BiQWqREANTap4wAzt4yWVysQhDKOQaSFAg5VQqeOaBprxTUxSCU3OBns1MVvBJBG0OzlEAL0VJhlzyoABsYoIEyqAJBigNOl0DTIGXcxeLMii7uYY4e-jC3BIPTS3F8Qi_GYsxsAC7_akSDArGoJO2UgwMkswskkxSLcyANXkKkDYxMjC1SE5KM5ZkkMFnkhR-aWkGLiPQ6gwDU2A-kWFgKSkqTZUFVq8lSXLgMJRjYHVy9QsIAvJ861wB_3yF2g
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60RfTmEx9VA3oNLkk23Z48iOtWt0Wwhd6WTTYFodbarYL_3pk01YPQUyCBkMdkJjP5Jh_AdbsTCdpX7tB74Mqgu2PGWvHSmk5iE2WkpgTnXl9nQ_U4ikch4FYHWOVKJ3pFXb1bipHfCKK3IQGTt7MPTqxR9LoaKDQ2oakk2mrKFE8ffmMsQrfxxiz_qVlvO9JdaD6XMzffgw033YctD7m09QEMlzSQtEiTb9ad0pO3q9iLe8PJvlqWl5QcPGEeimKXJA8Mr5hU8RUEBpvpdw1feDh3fQhX6f3gLuOrsRRBWurib27yCBro9rtjYJJ-2qqiyOjEKJdotOQVlkpEcWLNWJ5Aa11Pp-ubL2E7G_TyIu_2n85gRxBSI4rxzLSgsZh_unM0tQtz4dfzB_7ohfE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biologically+Inspired+Semantic+Lateral+Connectivity+for+Convolutional+Neural+Networks&rft.jtitle=arXiv.org&rft.au=Weidler%2C+Tonio&rft.au=Lehnen%2C+Julian&rft.au=Denman%2C+Quinton&rft.au=Seb%C5%91k%2C+D%C3%A1vid&rft.date=2021-05-20&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422