Disentangled Motif-aware Graph Learning for Phrase Grounding

In this paper, we propose a novel graph learning framework for phrase grounding in the image. Developing from the sequential to the dense graph model, existing works capture coarse-grained context but fail to distinguish the diversity of context among phrases and image regions. In contrast, we pay s...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Mu, Zongshen, Tang, Siliang, Tan, Jie, Yu, Qiang, Zhuang, Yueting
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 13.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we propose a novel graph learning framework for phrase grounding in the image. Developing from the sequential to the dense graph model, existing works capture coarse-grained context but fail to distinguish the diversity of context among phrases and image regions. In contrast, we pay special attention to different motifs implied in the context of the scene graph and devise the disentangled graph network to integrate the motif-aware contextual information into representations. Besides, we adopt interventional strategies at the feature and the structure levels to consolidate and generalize representations. Finally, the cross-modal attention network is utilized to fuse intra-modal features, where each phrase can be computed similarity with regions to select the best-grounded one. We validate the efficiency of disentangled and interventional graph network (DIGN) through a series of ablation studies, and our model achieves state-of-the-art performance on Flickr30K Entities and ReferIt Game benchmarks.
AbstractList In this paper, we propose a novel graph learning framework for phrase grounding in the image. Developing from the sequential to the dense graph model, existing works capture coarse-grained context but fail to distinguish the diversity of context among phrases and image regions. In contrast, we pay special attention to different motifs implied in the context of the scene graph and devise the disentangled graph network to integrate the motif-aware contextual information into representations. Besides, we adopt interventional strategies at the feature and the structure levels to consolidate and generalize representations. Finally, the cross-modal attention network is utilized to fuse intra-modal features, where each phrase can be computed similarity with regions to select the best-grounded one. We validate the efficiency of disentangled and interventional graph network (DIGN) through a series of ablation studies, and our model achieves state-of-the-art performance on Flickr30K Entities and ReferIt Game benchmarks.
Author Zhuang, Yueting
Tang, Siliang
Yu, Qiang
Mu, Zongshen
Tan, Jie
Author_xml – sequence: 1
  givenname: Zongshen
  surname: Mu
  fullname: Mu, Zongshen
– sequence: 2
  givenname: Siliang
  surname: Tang
  fullname: Tang, Siliang
– sequence: 3
  givenname: Jie
  surname: Tan
  fullname: Tan, Jie
– sequence: 4
  givenname: Qiang
  surname: Yu
  fullname: Yu, Qiang
– sequence: 5
  givenname: Yueting
  surname: Zhuang
  fullname: Zhuang, Yueting
BookMark eNqNissKwjAQAIMoWLX_EPBcSDdNVfDm86DgwXsJdPuibOqmxd-3gh_gaWBmFmJKjnAiAtA6jrYJwFyE3jdKKUg3YIwOxP5Ye6TeUtliLu-ur4vIvi2jvLDtKnlDy1RTKQvH8lGx9d_iBspHuRKzwrYewx-XYn0-PQ_XqGP3GtD3WeMGpjFlYGIwO5Ukqf7v-gBmoTkS
ContentType Paper
Copyright 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_25125904463
IEDL.DBID BENPR
IngestDate Thu Oct 10 19:36:11 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_25125904463
OpenAccessLink https://www.proquest.com/docview/2512590446?pq-origsite=%requestingapplication%
PQID 2512590446
PQPubID 2050157
ParticipantIDs proquest_journals_2512590446
PublicationCentury 2000
PublicationDate 20210413
PublicationDateYYYYMMDD 2021-04-13
PublicationDate_xml – month: 04
  year: 2021
  text: 20210413
  day: 13
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2021
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.3234677
SecondaryResourceType preprint
Snippet In this paper, we propose a novel graph learning framework for phrase grounding in the image. Developing from the sequential to the dense graph model, existing...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Ablation
Context
Image contrast
Learning
Representations
Title Disentangled Motif-aware Graph Learning for Phrase Grounding
URI https://www.proquest.com/docview/2512590446
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFD64FsE3r3iZI6Cvwa5N2wgDQW03hI4iCnsbaXI6B7JLW_HN376kZPog7DEEckgI5zvnOzeAW_RUH0tVUN73OGWy5JQrX1KNFoXnK9QIYaiBbByN3tnLJJxYwq22aZVbndgqarWUhiO_Mzgc3pvw48NqTc3UKBNdtSM0OuD62lPwHHAfk3H--suy-FGsbebgn6Jt0SM9BDcXK6yOYA8Xx7DfJl3K-gQGz_O29Gcx-0RFsmUzL6n4FhWSoWkjTWzv0xnRhiXJPyoNOMRwRW0hyincpMnb04huRU7tt6inf5cIzsDR_j2eA2FKBZHiTDAZsRgDEWMklYZmwb1QyvACurtOuty9fQUHvknDMO0Jgy44TfWF1xpHm6IHHZ4Oe_bJ9Cr7STYCiX1r
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3PS8MwFMcfuiHu5k90Tg3oNdg1aRtB8KB2Vdexw4TdSpqkcyDbbCv---aFTg_CzoGEhPA-L9-8HwDXxtN9U-icir4nKFeFoEL7ilpa5J6vjSUESgPpKEze-Ms0mDaCW9WEVa5tojPUeqlQI79BDge3-P14v_qk2DUKf1ebFhrb0ObMshozxePBr8bih5H1mNk_M-vYEe9BeyxXptyHLbM4gB0XcqmqQ7h7nLvEn8Xsw2iSLut5QeW3LA0ZYBFp0lQ-nRHrVpLxe2lxQ1ApcmkoR3AVP00eErpeMmsuRZX9bYEdQ8u-7s0JEK41C7XgkquQR4bJyIRKWzBL4QVKBafQ2zRTd_PwJewmk3SYDZ9Hr2fQ8TEgAwsVsh606vLLnFui1vmFO7YfAwV83w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disentangled+Motif-aware+Graph+Learning+for+Phrase+Grounding&rft.jtitle=arXiv.org&rft.au=Mu%2C+Zongshen&rft.au=Tang%2C+Siliang&rft.au=Tan%2C+Jie&rft.au=Yu%2C+Qiang&rft.date=2021-04-13&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422