Continuation Sheaves in Dynamics: Sheaf Cohomology and Bifurcation

Continuation of algebraic structures in families of dynamical systems is described using category theory, sheaves, and lattice algebras. Well-known concepts in dynamics, such as attractors or invariant sets, are formulated as functors on appropriate categories of dynamical systems mapping to categor...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Dowling, K, Kalies, W D, R C A M Vandervorst
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 03.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Continuation of algebraic structures in families of dynamical systems is described using category theory, sheaves, and lattice algebras. Well-known concepts in dynamics, such as attractors or invariant sets, are formulated as functors on appropriate categories of dynamical systems mapping to categories of lattices, posets, rings or abelian groups. Sheaves are constructed from such functors, which encode data about the continuation of structure as system parameters vary. Similarly, morphisms for the sheaves in question arise from natural transformations. This framework is applied to a variety of lattice algebras and ring structures associated to dynamical systems, whose algebraic properties carry over to their respective sheaves. Furthermore, the cohomology of these sheaves are algebraic invariants which contain information about bifurcations of the parametrized systems.
AbstractList Continuation of algebraic structures in families of dynamical systems is described using category theory, sheaves, and lattice algebras. Well-known concepts in dynamics, such as attractors or invariant sets, are formulated as functors on appropriate categories of dynamical systems mapping to categories of lattices, posets, rings or abelian groups. Sheaves are constructed from such functors, which encode data about the continuation of structure as system parameters vary. Similarly, morphisms for the sheaves in question arise from natural transformations. This framework is applied to a variety of lattice algebras and ring structures associated to dynamical systems, whose algebraic properties carry over to their respective sheaves. Furthermore, the cohomology of these sheaves are algebraic invariants which contain information about bifurcations of the parametrized systems.
Author Dowling, K
Kalies, W D
R C A M Vandervorst
Author_xml – sequence: 1
  givenname: K
  surname: Dowling
  fullname: Dowling, K
– sequence: 2
  givenname: W
  surname: Kalies
  middlename: D
  fullname: Kalies, W D
– sequence: 3
  fullname: R C A M Vandervorst
BookMark eNqNi8EKgkAURYcoyMp_GGgt2JvRpKVWtK-9DDaTI_peOU7g3xfSB7S6cM65KzZHQj1jAQixizIJsGShc00cx5DuIUlEwPKCcLDo1WAJ-bXW6q0dt8iPI6rOVu4wQcMLqqmjlh4jV3jnuTW-r6bXhi2Map0Of7tm2_PpVlyiZ08vr91QNuR7_KoSZJYKASCl-K_6AAGJO3Q
ContentType Paper
Copyright 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_24863322443
IEDL.DBID BENPR
IngestDate Thu Oct 10 15:54:49 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_24863322443
OpenAccessLink https://www.proquest.com/docview/2486332244?pq-origsite=%requestingapplication%
PQID 2486332244
PQPubID 2050157
ParticipantIDs proquest_journals_2486332244
PublicationCentury 2000
PublicationDate 20210203
PublicationDateYYYYMMDD 2021-02-03
PublicationDate_xml – month: 02
  year: 2021
  text: 20210203
  day: 03
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2021
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.308365
SecondaryResourceType preprint
Snippet Continuation of algebraic structures in families of dynamical systems is described using category theory, sheaves, and lattice algebras. Well-known concepts in...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algebra
Bifurcations
Chaos theory
Dynamical systems
Group theory
Homology
Invariants
Lattices
Ring structures
Set theory
Sheaves
Title Continuation Sheaves in Dynamics: Sheaf Cohomology and Bifurcation
URI https://www.proquest.com/docview/2486332244
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8MwGH5xLYI3P_FjjoBeg2uTtqkXobN1CI4hCruNpkmwB9ut3Tz6202yTg_CjklIQsLL-_HkIQ_AbVBwPqRKYY_QIaZxIXHOFMGKExGIMNLzLNtiEo7f6fMsmHWAW9vRKrc-0TpqURcGI7_zKQuJtj5KHxZLbFSjzOtqJ6HRA9fXlYLvgJukk-nrL8rih5HOmck_R2ujR3YI7jRfyOYI9mR1DPuWdFm0J5CYr6HKavPZNjLa0l-yRWWFHjcy8e297VRoVH_Unxb_RrrwR0mp1s0GajuFmyx9G43xduN5Zxzt_O8o5AwcXeXLc0BRzrTzEF5EdIaiYo8VIiac5owKKmnEL6C_a6XL3cNXcOAbMoahG5M-OKtmLa91NF3xAfRY9jToLk63Xr7THzRcf9w
link.rule.ids 783,787,12779,21402,33387,33758,43614,43819
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5BKwQbT_EoYAlWi6a-vFiQWggBSsVQpG5RHNsiA0lJWn4_tpPCgNTVlm3ZOn139_mzD-DazTjvo1LUYdinGGaSpoFiVHEmXOH5epxVW0y8-B2fZ-6sJdzqVla5wkQL1KLMDEd-M8DAY9r6EO_mX9RUjTK3q20JjU3oItOOxrwUjx5_OZaB5-uImf2DWes7ol3ovqVzWe3Bhiz2YctKLrP6AIbmY6i8aL7aJqay9LesSV6Q-6ZIfH1rGxUZlR_lp2W_iU77yTBXy6oh2g7hKnqYjmK6WjhpTaNO_jbCjqCjc3x5DMRPAw0dwvGZjk9U6ASZCBnHNECBEn1-Ar11M52u776E7Xj6Ok7GT5OXM9gZGFmGER6zHnQW1VKea7-64Bf28H4AKvB_UA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuation+Sheaves+in+Dynamics%3A+Sheaf+Cohomology+and+Bifurcation&rft.jtitle=arXiv.org&rft.au=Dowling%2C+K&rft.au=Kalies%2C+W+D&rft.au=R+C+A+M+Vandervorst&rft.date=2021-02-03&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422