Performance of the Uniform Closure Method for open knotting as a Bayes-type classifier

The discovery of knotting in proteins and other macromolecular chains has motivated researchers to more carefully consider how to identify and classify knots in open arcs. Most definitions classify knotting in open arcs by constructing an ensemble of closures and measuring the probability of differe...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Tibor, Emily, Annoni, Elizabeth M, Brine-Doyle, Erin, Kumerow, Nicole, Shogren, Madeline, Cantarella, Jason, Shonkwiler, Clayton, Rawdon, Eric J
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 17.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The discovery of knotting in proteins and other macromolecular chains has motivated researchers to more carefully consider how to identify and classify knots in open arcs. Most definitions classify knotting in open arcs by constructing an ensemble of closures and measuring the probability of different knot types among these closures. In this paper, we think of assigning knot types to open curves as a classification problem and compare the performance of the Bayes MAP classifier to the standard Uniform Closure Method. Surprisingly, we find that both methods are essentially equivalent as classifiers, having comparable accuracy and positive predictive value across a wide range of input arc lengths and knot types.
AbstractList The discovery of knotting in proteins and other macromolecular chains has motivated researchers to more carefully consider how to identify and classify knots in open arcs. Most definitions classify knotting in open arcs by constructing an ensemble of closures and measuring the probability of different knot types among these closures. In this paper, we think of assigning knot types to open curves as a classification problem and compare the performance of the Bayes MAP classifier to the standard Uniform Closure Method. Surprisingly, we find that both methods are essentially equivalent as classifiers, having comparable accuracy and positive predictive value across a wide range of input arc lengths and knot types.
Author Cantarella, Jason
Kumerow, Nicole
Brine-Doyle, Erin
Annoni, Elizabeth M
Shogren, Madeline
Tibor, Emily
Shonkwiler, Clayton
Rawdon, Eric J
Author_xml – sequence: 1
  givenname: Emily
  surname: Tibor
  fullname: Tibor, Emily
– sequence: 2
  givenname: Elizabeth
  surname: Annoni
  middlename: M
  fullname: Annoni, Elizabeth M
– sequence: 3
  givenname: Erin
  surname: Brine-Doyle
  fullname: Brine-Doyle, Erin
– sequence: 4
  givenname: Nicole
  surname: Kumerow
  fullname: Kumerow, Nicole
– sequence: 5
  givenname: Madeline
  surname: Shogren
  fullname: Shogren, Madeline
– sequence: 6
  givenname: Jason
  surname: Cantarella
  fullname: Cantarella, Jason
– sequence: 7
  givenname: Clayton
  surname: Shonkwiler
  fullname: Shonkwiler, Clayton
– sequence: 8
  givenname: Eric
  surname: Rawdon
  middlename: J
  fullname: Rawdon, Eric J
BookMark eNqNisEKgkAUAJcoyMp_eNBZsF01uyZFl6BDdZXFnqnZPtu3Hvz7CvqATgMzMxNjQwZHwpNKrYI0knIqfOYmDEOZrGUcK09cT2hLsk9tCgQqwVUIF1N_FWQtcW8RjugqusHHAXVo4GHIudrcQTNo2OoBOXBDh1C0mrkua7QLMSl1y-j_OBfL_e6cHYLO0qtHdnlDvTWflMsokSqUmyhV_11vW5JCsw
ContentType Paper
Copyright 2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
ProQuest Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_24623029483
IEDL.DBID 8FG
IngestDate Thu Oct 10 19:51:41 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_24623029483
OpenAccessLink https://www.proquest.com/docview/2462302948?pq-origsite=%requestingapplication%
PQID 2462302948
PQPubID 2050157
ParticipantIDs proquest_journals_2462302948
PublicationCentury 2000
PublicationDate 20201117
PublicationDateYYYYMMDD 2020-11-17
PublicationDate_xml – month: 11
  year: 2020
  text: 20201117
  day: 17
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2020
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.3045146
SecondaryResourceType preprint
Snippet The discovery of knotting in proteins and other macromolecular chains has motivated researchers to more carefully consider how to identify and classify knots...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Classification
Classifiers
Closures
Knots
Molecular chains
Title Performance of the Uniform Closure Method for open knotting as a Bayes-type classifier
URI https://www.proquest.com/docview/2462302948
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFH_oiuDNT_yY44Feg22Sru1J2GgdwkYRld1GmqYgyrqt8-DFv9280LmDsGNeICTh8T5-75c8gDuleRzqymcyVJLJWGmWCOkzFQijCpHQ0zRiW0z6o1f5NA2nLeDWtLTKjU10hrqsNWHk91xaR-3zRMYPiyWjrlFUXW1baOyDF_AoIq2Os8c_jIX3Ixsxi39m1vmO7Ai8XC3M6hj2zPwEDhzlUjen8JZvOftYV2gjMbQRIIlw-FkTcodj198ZrQypzRV-zGvHU0bVoMKB-jYNIxAVNQXB75X1cWdwm6UvwxHbbGbWqksz2x5OnEPH5v3mAjA2UotAVSV991loQxUvIwLJo8ovS-1fQnfXSle7p6_hkFPqSIy2qAud9erL3Fj_ui567hJ74A3SSf5sR-Of9Bc5gIYD
link.rule.ids 783,787,12779,21402,33387,33758,43614,43819
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90RfTNT_yYeqCvwTbJ1vZJ2NioupUiU_ZW0jQFmaxznQ_-9-ZK5x6EvV4gJOG4j9_9cgdwrzQPOrpwmewoyWSgNAuFdJnyhFGZCOlrGrEt4m70Jp-nnWkDuFUNrXJtE2tDnZeaMPIHLq2jdnkog8fFF6OpUVRdbUZo7IJDraqsVju9QZy8_qEsvOvbmFn8M7S19xgegpOohVkewY6ZH8NeTbrU1Qm8JxvWPpYF2lgMbQxIIux_loTd4bie8IxWhjToCmfzsmYqo6pQYU_9mIoRjIqawuCPwnq5U7gbDib9iK0PkzYKU6Wb64kzaNnM35wDBkZq4akip4afmTZU8zLCk9wv3DzX7gW0t-10uX35FvajyXiUjp7ilys44JRIEr_Nb0Nrtfw219bbrrKb5kl_AYgsh4k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+of+the+Uniform+Closure+Method+for+open+knotting+as+a+Bayes-type+classifier&rft.jtitle=arXiv.org&rft.au=Tibor%2C+Emily&rft.au=Annoni%2C+Elizabeth+M&rft.au=Brine-Doyle%2C+Erin&rft.au=Kumerow%2C+Nicole&rft.date=2020-11-17&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422