Asymmetric Private Set Intersection with Applications to Contact Tracing and Private Vertical Federated Machine Learning
We present a multi-language, cross-platform, open-source library for asymmetric private set intersection (PSI) and PSI-Cardinality (PSI-C). Our protocol combines traditional DDH-based PSI and PSI-C protocols with compression based on Bloom filters that helps reduce communication in the asymmetric se...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
18.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We present a multi-language, cross-platform, open-source library for asymmetric private set intersection (PSI) and PSI-Cardinality (PSI-C). Our protocol combines traditional DDH-based PSI and PSI-C protocols with compression based on Bloom filters that helps reduce communication in the asymmetric setting. Currently, our library supports C++, C, Go, WebAssembly, JavaScript, Python, and Rust, and runs on both traditional hardware (x86) and browser targets. We further apply our library to two use cases: (i) a privacy-preserving contact tracing protocol that is compatible with existing approaches, but improves their privacy guarantees, and (ii) privacy-preserving machine learning on vertically partitioned data. |
---|---|
AbstractList | We present a multi-language, cross-platform, open-source library for asymmetric private set intersection (PSI) and PSI-Cardinality (PSI-C). Our protocol combines traditional DDH-based PSI and PSI-C protocols with compression based on Bloom filters that helps reduce communication in the asymmetric setting. Currently, our library supports C++, C, Go, WebAssembly, JavaScript, Python, and Rust, and runs on both traditional hardware (x86) and browser targets. We further apply our library to two use cases: (i) a privacy-preserving contact tracing protocol that is compatible with existing approaches, but improves their privacy guarantees, and (ii) privacy-preserving machine learning on vertically partitioned data. |
Author | Angelou, Nick Papadopoulos, Pavlos Liu, Daniel Sandmann, Robert Roehm, Robin Hall, Adam James Cebere, Bogdan Hoeh, Michael A Clark, William Ayoub Benaissa Schoppmann, Phillipp Titcombe, Tom |
Author_xml | – sequence: 1 givenname: Nick surname: Angelou fullname: Angelou, Nick – sequence: 2 fullname: Ayoub Benaissa – sequence: 3 givenname: Bogdan surname: Cebere fullname: Cebere, Bogdan – sequence: 4 givenname: William surname: Clark fullname: Clark, William – sequence: 5 givenname: Adam surname: Hall middlename: James fullname: Hall, Adam James – sequence: 6 givenname: Michael surname: Hoeh middlename: A fullname: Hoeh, Michael A – sequence: 7 givenname: Daniel surname: Liu fullname: Liu, Daniel – sequence: 8 givenname: Pavlos surname: Papadopoulos fullname: Papadopoulos, Pavlos – sequence: 9 givenname: Robin surname: Roehm fullname: Roehm, Robin – sequence: 10 givenname: Robert surname: Sandmann fullname: Sandmann, Robert – sequence: 11 givenname: Phillipp surname: Schoppmann fullname: Schoppmann, Phillipp – sequence: 12 givenname: Tom surname: Titcombe fullname: Titcombe, Tom |
BookMark | eNqNjMuKwkAQRRtR8JV_KHAtJN1G3YooDsyAoLiVplOallgdq0ud-fvJwODa1YVzD6ev2hQIW6qnjcnG84nWXZXEeEnTVE9nOs9NT30v4s_1isLewZb9wwrCDgU-SJAjOvGB4OmlhEVdV97ZPxBBAiwDiXUCe7bO0xksFa_CAVkat4I1FsgNKeDLutITwidapsYfqs7JVhGT_x2o0Xq1X27GNYfbHaMcL-HO1FxHPZlqk-o8y8x71i9OK0-W |
ContentType | Paper |
Copyright | 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PTHSS |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Engineering Collection ProQuest Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PIMPY PQEST PQQKQ PQUKI PTHSS |
ID | FETCH-proquest_journals_24623025113 |
IEDL.DBID | 8FG |
IngestDate | Thu Oct 10 20:41:54 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-proquest_journals_24623025113 |
OpenAccessLink | https://www.proquest.com/docview/2462302511?pq-origsite=%requestingapplication% |
PQID | 2462302511 |
PQPubID | 2050157 |
ParticipantIDs | proquest_journals_2462302511 |
PublicationCentury | 2000 |
PublicationDate | 20201118 |
PublicationDateYYYYMMDD | 2020-11-18 |
PublicationDate_xml | – month: 11 year: 2020 text: 20201118 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2020 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 3.3009856 |
SecondaryResourceType | preprint |
Snippet | We present a multi-language, cross-platform, open-source library for asymmetric private set intersection (PSI) and PSI-Cardinality (PSI-C). Our protocol... |
SourceID | proquest |
SourceType | Aggregation Database |
SubjectTerms | Asymmetry Contact tracing Libraries Machine learning Privacy |
Title | Asymmetric Private Set Intersection with Applications to Contact Tracing and Private Vertical Federated Machine Learning |
URI | https://www.proquest.com/docview/2462302511 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60RfDmEx-1DOg1uK9me5Mquxahpfiit5Jkp17stt1dQS_-djNhWwWhxyQQkhDmS758mQ_gis1fLbKRkNQxIgopFjoMI-HR1DOZ1LaNfyMPhrL_Ej2MO-OacCtrWeUqJrpAnc0Nc-TXQWSB2h2IbxZLwa5R_LpaW2hsQ9MP4pgvX930fs2xBDK2J-bwX5h12JHuQXOkFlTswxblB7DjJJemPITPXvk1m7GhlcFRwSZjhE9UoePoSqeQypFpUuz9eWTGao6cUUqZCi3OGIs8qPJs3cOr00mrd0w5S4StyXDg9JKEdSrVtyO4TJPnu75YDXdSb6hy8jv98Bga-TynE0B_6gWkiPyukpH0tNaGPEVa6sBESnqn0NrU09nm5nPYDfhyyZq3bgsaVfFBFxaBK912y9yG5m0yHD3a0uA7-QHxzJNu |
link.rule.ids | 783,787,12777,21400,33385,33756,43612,43817 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NSwMxEB20RfTmJ35UHdDr4nY3TXuTIq6rtqVgld6WJDv10m7r7gr6782EbRWEXhMISQjzJi8v8wCu2fzVIht5klrGEyG1PR2GwvNp4ptUatvHv5H7Axm_iqdxa1wRbkUlq1zGRBeo07lhjvwmEBaoXUJ8u_jw2DWKX1crC41NqIvQYjX_FI8eVhxLINs2Yw7_hVmHHdEu1IdqQfkebFC2D1tOcmmKA_jqFt-zGRtaGRzmbDJG-EIlOo6ucAqpDJkmxe6fR2Ys58gVpZQp0eKMsciDKktXI7w5nbSaYsRVImxLin2nlySsSqm-H8JVdD-6i73ldJPqQBXJ7_LDI6hl84yOAZsTPyBF1OwoKaSvtTbkK9JSB0Yo6Z9AY91Ip-u7L2E7HvV7Se9x8HwGOwFfNFn_1mlArcw_6dyicakv3Jb_ANTUk4U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymmetric+Private+Set+Intersection+with+Applications+to+Contact+Tracing+and+Private+Vertical+Federated+Machine+Learning&rft.jtitle=arXiv.org&rft.au=Angelou%2C+Nick&rft.au=Ayoub+Benaissa&rft.au=Cebere%2C+Bogdan&rft.au=Clark%2C+William&rft.date=2020-11-18&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422 |