Asymmetric Private Set Intersection with Applications to Contact Tracing and Private Vertical Federated Machine Learning

We present a multi-language, cross-platform, open-source library for asymmetric private set intersection (PSI) and PSI-Cardinality (PSI-C). Our protocol combines traditional DDH-based PSI and PSI-C protocols with compression based on Bloom filters that helps reduce communication in the asymmetric se...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Angelou, Nick, Ayoub Benaissa, Cebere, Bogdan, Clark, William, Hall, Adam James, Hoeh, Michael A, Liu, Daniel, Papadopoulos, Pavlos, Roehm, Robin, Sandmann, Robert, Schoppmann, Phillipp, Titcombe, Tom
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 18.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present a multi-language, cross-platform, open-source library for asymmetric private set intersection (PSI) and PSI-Cardinality (PSI-C). Our protocol combines traditional DDH-based PSI and PSI-C protocols with compression based on Bloom filters that helps reduce communication in the asymmetric setting. Currently, our library supports C++, C, Go, WebAssembly, JavaScript, Python, and Rust, and runs on both traditional hardware (x86) and browser targets. We further apply our library to two use cases: (i) a privacy-preserving contact tracing protocol that is compatible with existing approaches, but improves their privacy guarantees, and (ii) privacy-preserving machine learning on vertically partitioned data.
AbstractList We present a multi-language, cross-platform, open-source library for asymmetric private set intersection (PSI) and PSI-Cardinality (PSI-C). Our protocol combines traditional DDH-based PSI and PSI-C protocols with compression based on Bloom filters that helps reduce communication in the asymmetric setting. Currently, our library supports C++, C, Go, WebAssembly, JavaScript, Python, and Rust, and runs on both traditional hardware (x86) and browser targets. We further apply our library to two use cases: (i) a privacy-preserving contact tracing protocol that is compatible with existing approaches, but improves their privacy guarantees, and (ii) privacy-preserving machine learning on vertically partitioned data.
Author Angelou, Nick
Papadopoulos, Pavlos
Liu, Daniel
Sandmann, Robert
Roehm, Robin
Hall, Adam James
Cebere, Bogdan
Hoeh, Michael A
Clark, William
Ayoub Benaissa
Schoppmann, Phillipp
Titcombe, Tom
Author_xml – sequence: 1
  givenname: Nick
  surname: Angelou
  fullname: Angelou, Nick
– sequence: 2
  fullname: Ayoub Benaissa
– sequence: 3
  givenname: Bogdan
  surname: Cebere
  fullname: Cebere, Bogdan
– sequence: 4
  givenname: William
  surname: Clark
  fullname: Clark, William
– sequence: 5
  givenname: Adam
  surname: Hall
  middlename: James
  fullname: Hall, Adam James
– sequence: 6
  givenname: Michael
  surname: Hoeh
  middlename: A
  fullname: Hoeh, Michael A
– sequence: 7
  givenname: Daniel
  surname: Liu
  fullname: Liu, Daniel
– sequence: 8
  givenname: Pavlos
  surname: Papadopoulos
  fullname: Papadopoulos, Pavlos
– sequence: 9
  givenname: Robin
  surname: Roehm
  fullname: Roehm, Robin
– sequence: 10
  givenname: Robert
  surname: Sandmann
  fullname: Sandmann, Robert
– sequence: 11
  givenname: Phillipp
  surname: Schoppmann
  fullname: Schoppmann, Phillipp
– sequence: 12
  givenname: Tom
  surname: Titcombe
  fullname: Titcombe, Tom
BookMark eNqNjMuKwkAQRRtR8JV_KHAtJN1G3YooDsyAoLiVplOallgdq0ud-fvJwODa1YVzD6ev2hQIW6qnjcnG84nWXZXEeEnTVE9nOs9NT30v4s_1isLewZb9wwrCDgU-SJAjOvGB4OmlhEVdV97ZPxBBAiwDiXUCe7bO0xksFa_CAVkat4I1FsgNKeDLutITwidapsYfqs7JVhGT_x2o0Xq1X27GNYfbHaMcL-HO1FxHPZlqk-o8y8x71i9OK0-W
ContentType Paper
Copyright 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Engineering Collection
ProQuest Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PTHSS
ID FETCH-proquest_journals_24623025113
IEDL.DBID 8FG
IngestDate Thu Oct 10 20:41:54 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_24623025113
OpenAccessLink https://www.proquest.com/docview/2462302511?pq-origsite=%requestingapplication%
PQID 2462302511
PQPubID 2050157
ParticipantIDs proquest_journals_2462302511
PublicationCentury 2000
PublicationDate 20201118
PublicationDateYYYYMMDD 2020-11-18
PublicationDate_xml – month: 11
  year: 2020
  text: 20201118
  day: 18
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2020
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.3009856
SecondaryResourceType preprint
Snippet We present a multi-language, cross-platform, open-source library for asymmetric private set intersection (PSI) and PSI-Cardinality (PSI-C). Our protocol...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Asymmetry
Contact tracing
Libraries
Machine learning
Privacy
Title Asymmetric Private Set Intersection with Applications to Contact Tracing and Private Vertical Federated Machine Learning
URI https://www.proquest.com/docview/2462302511
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60RfDmEx-1DOg1uK9me5Mquxahpfiit5Jkp17stt1dQS_-djNhWwWhxyQQkhDmS758mQ_gis1fLbKRkNQxIgopFjoMI-HR1DOZ1LaNfyMPhrL_Ej2MO-OacCtrWeUqJrpAnc0Nc-TXQWSB2h2IbxZLwa5R_LpaW2hsQ9MP4pgvX930fs2xBDK2J-bwX5h12JHuQXOkFlTswxblB7DjJJemPITPXvk1m7GhlcFRwSZjhE9UoePoSqeQypFpUuz9eWTGao6cUUqZCi3OGIs8qPJs3cOr00mrd0w5S4StyXDg9JKEdSrVtyO4TJPnu75YDXdSb6hy8jv98Bga-TynE0B_6gWkiPyukpH0tNaGPEVa6sBESnqn0NrU09nm5nPYDfhyyZq3bgsaVfFBFxaBK912y9yG5m0yHD3a0uA7-QHxzJNu
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NSwMxEB20RfTmJ35UHdDr4nY3TXuTIq6rtqVgld6WJDv10m7r7gr6782EbRWEXhMISQjzJi8v8wCu2fzVIht5klrGEyG1PR2GwvNp4ptUatvHv5H7Axm_iqdxa1wRbkUlq1zGRBeo07lhjvwmEBaoXUJ8u_jw2DWKX1crC41NqIvQYjX_FI8eVhxLINs2Yw7_hVmHHdEu1IdqQfkebFC2D1tOcmmKA_jqFt-zGRtaGRzmbDJG-EIlOo6ucAqpDJkmxe6fR2Ys58gVpZQp0eKMsciDKktXI7w5nbSaYsRVImxLin2nlySsSqm-H8JVdD-6i73ldJPqQBXJ7_LDI6hl84yOAZsTPyBF1OwoKaSvtTbkK9JSB0Yo6Z9AY91Ip-u7L2E7HvV7Se9x8HwGOwFfNFn_1mlArcw_6dyicakv3Jb_ANTUk4U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymmetric+Private+Set+Intersection+with+Applications+to+Contact+Tracing+and+Private+Vertical+Federated+Machine+Learning&rft.jtitle=arXiv.org&rft.au=Angelou%2C+Nick&rft.au=Ayoub+Benaissa&rft.au=Cebere%2C+Bogdan&rft.au=Clark%2C+William&rft.date=2020-11-18&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422