An Audio-Video Deep and Transfer Learning Framework for Multimodal Emotion Recognition in the wild

In this paper, we present our contribution to ABAW facial expression challenge. We report the proposed system and the official challenge results adhering to the challenge protocol. Using end-to-end deep learning and benefiting from transfer learning approaches, we reached a test set challenge perfor...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Dresvyanskiy, Denis, Ryumina, Elena, Kaya, Heysem, Markitantov, Maxim, Karpov, Alexey, Minker, Wolfgang
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 02.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we present our contribution to ABAW facial expression challenge. We report the proposed system and the official challenge results adhering to the challenge protocol. Using end-to-end deep learning and benefiting from transfer learning approaches, we reached a test set challenge performance measure of 42.10%.
AbstractList In this paper, we present our contribution to ABAW facial expression challenge. We report the proposed system and the official challenge results adhering to the challenge protocol. Using end-to-end deep learning and benefiting from transfer learning approaches, we reached a test set challenge performance measure of 42.10%.
Author Dresvyanskiy, Denis
Minker, Wolfgang
Karpov, Alexey
Kaya, Heysem
Markitantov, Maxim
Ryumina, Elena
Author_xml – sequence: 1
  givenname: Denis
  surname: Dresvyanskiy
  fullname: Dresvyanskiy, Denis
– sequence: 2
  givenname: Elena
  surname: Ryumina
  fullname: Ryumina, Elena
– sequence: 3
  givenname: Heysem
  surname: Kaya
  fullname: Kaya, Heysem
– sequence: 4
  givenname: Maxim
  surname: Markitantov
  fullname: Markitantov, Maxim
– sequence: 5
  givenname: Alexey
  surname: Karpov
  fullname: Karpov, Alexey
– sequence: 6
  givenname: Wolfgang
  surname: Minker
  fullname: Minker, Wolfgang
BookMark eNqNissKwjAQAIMo-Oo_LHgu1KTxcRQfeNCLFK8SzVZT211NWvx9RfwATzMw0xdtYsKW6EmlxvEslbIrohCKJEnkZCq1Vj1xXhAsGus4PjqLDCvEBxiykHlDIUcPOzSeHF1h402FL_Z3yNnDvilrV7E1Jawrrh0THPDCV3JfdwT1DeHlSjsUndyUAaMfB2K0WWfLbfzw_Gww1KeCG0-fdJJpOtd6pnSq_rvejjBGww
ContentType Paper
Copyright 2020. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_24495583543
IEDL.DBID 8FG
IngestDate Thu Oct 10 18:32:15 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_24495583543
OpenAccessLink https://www.proquest.com/docview/2449558354?pq-origsite=%requestingapplication%
PQID 2449558354
PQPubID 2050157
ParticipantIDs proquest_journals_2449558354
PublicationCentury 2000
PublicationDate 20201102
PublicationDateYYYYMMDD 2020-11-02
PublicationDate_xml – month: 11
  year: 2020
  text: 20201102
  day: 02
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2020
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.2923996
SecondaryResourceType preprint
Snippet In this paper, we present our contribution to ABAW facial expression challenge. We report the proposed system and the official challenge results adhering to...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Emotion recognition
Machine learning
Title An Audio-Video Deep and Transfer Learning Framework for Multimodal Emotion Recognition in the wild
URI https://www.proquest.com/docview/2449558354
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60RfDmEx-1DOg1uM02u9uTVN21CC2lqPRWdpOpFOxu7ePqb3cSd_Ug9JYQCElIZr758iUDcBMGNDVtqQWjDRLtLOyIyCcSng6igBGG1O63_f4g6L22n8dqXBJuq1JWWdlEZ6hNoS1HfstuqKOUpSnuFp_CZo2yt6tlCo1dqLdkGFpJV5Q8_XIsMggZMfv_zKzzHckB1IfpgpaHsEP5Eew5yaVeHUPWzbG7MbNCvM0MFfhItECO69G5jyktsfz79B2TSkGFDDHRvZmdFyb9wPgnCQ-OKhkQl2c5MqhDxsDmBK6T-OWhJ6qBTcqts5r8TdQ_hVpe5HQGyCCi42vPTzPDR06ZNFLSI-VJ08qMr9U5NLb1dLG9-RL2pQ0jLVsqG1BbLzd0xb52nTXdgjahfh8PhiOu9b_ib6LHiZc
link.rule.ids 783,787,12778,21401,33386,33757,43613,43818
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwED50RfTNn_hj6oG-Bmu6dN2TTF2puo0xpuxttMlNCtrWdfv_TWKrD8LeAoGQhOTuuy9f7gCu2z7NVYtLptEGsVbS7rDAI2Ku9ANfIwwubbb9wdCPXlvPUzGtCLeyklXWNtEaapVLw5HfaDfUEcLQFHfFFzNVo8zralVCYxMck6oqaIBz3xuOxr8sC_fbGjN7_wyt9R7hLjijuKDFHmxQtg9bVnQpywNIuhl2VyrN2VuqKMdHogJ1ZI_WgcxpgVX203cMaw0VapCJ9tfsZ67iD-z9lOHBcS0E0u00Qw3rUKNgdQhXYW_yELF6YrPq8JSzv6V6R9DI8oyOATWM6HjS9eJE6UsnVBwI7pJwubpNlCfFCTTXjXS6vvsStqPJoD_rPw1fzmCHm6DScKe8CY3lYkXn2vMuk4tqe78B-f-LHQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Audio-Video+Deep+and+Transfer+Learning+Framework+for+Multimodal+Emotion+Recognition+in+the+wild&rft.jtitle=arXiv.org&rft.au=Dresvyanskiy%2C+Denis&rft.au=Ryumina%2C+Elena&rft.au=Kaya%2C+Heysem&rft.au=Markitantov%2C+Maxim&rft.date=2020-11-02&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422