Discrete Few-Shot Learning for Pan Privacy

In this paper we present the first baseline results for the task of few-shot learning of discrete embedding vectors for image recognition. Few-shot learning is a highly researched task, commonly leveraged by recognition systems that are resource constrained to train on a small number of images per c...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Gelbhart, Roei, Rubinstein, Benjamin I P
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 23.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper we present the first baseline results for the task of few-shot learning of discrete embedding vectors for image recognition. Few-shot learning is a highly researched task, commonly leveraged by recognition systems that are resource constrained to train on a small number of images per class. Few-shot systems typically store a continuous embedding vector of each class, posing a risk to privacy where system breaches or insider threats are a concern. Using discrete embedding vectors, we devise a simple cryptographic protocol, which uses one-way hash functions in order to build recognition systems that do not store their users' embedding vectors directly, thus providing the guarantee of computational pan privacy in a practical and wide-spread setting.
AbstractList In this paper we present the first baseline results for the task of few-shot learning of discrete embedding vectors for image recognition. Few-shot learning is a highly researched task, commonly leveraged by recognition systems that are resource constrained to train on a small number of images per class. Few-shot systems typically store a continuous embedding vector of each class, posing a risk to privacy where system breaches or insider threats are a concern. Using discrete embedding vectors, we devise a simple cryptographic protocol, which uses one-way hash functions in order to build recognition systems that do not store their users' embedding vectors directly, thus providing the guarantee of computational pan privacy in a practical and wide-spread setting.
Author Rubinstein, Benjamin I P
Gelbhart, Roei
Author_xml – sequence: 1
  givenname: Roei
  surname: Gelbhart
  fullname: Gelbhart, Roei
– sequence: 2
  givenname: Benjamin
  surname: Rubinstein
  middlename: I P
  fullname: Rubinstein, Benjamin I P
BookMark eNrjYmDJy89LZWLgNDI2NtS1MDEy4mDgLS7OMjAwMDIzNzI1NeZk0HLJLE4uSi1JVXBLLdcNzsgvUfBJTSzKy8xLV0jLL1IISMxTCCjKLEtMruRhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjE0Mzc1Mzc3MTY-JUAQDwVTID
ContentType Paper
Copyright 2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_24167567743
IEDL.DBID BENPR
IngestDate Thu Oct 10 20:31:01 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_24167567743
OpenAccessLink https://www.proquest.com/docview/2416756774?pq-origsite=%requestingapplication%
PQID 2416756774
PQPubID 2050157
ParticipantIDs proquest_journals_2416756774
PublicationCentury 2000
PublicationDate 20200623
PublicationDateYYYYMMDD 2020-06-23
PublicationDate_xml – month: 06
  year: 2020
  text: 20200623
  day: 23
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2020
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.271066
SecondaryResourceType preprint
Snippet In this paper we present the first baseline results for the task of few-shot learning of discrete embedding vectors for image recognition. Few-shot learning is...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Cryptography
Embedding
Learning
Object recognition
Privacy
Title Discrete Few-Shot Learning for Pan Privacy
URI https://www.proquest.com/docview/2416756774
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQSQNWysBkYKibmppspmuSbJyqmwRiASuPVEtDi-Q0s1TQRmFfPzOPUBOvCNMI6IBbMXRZJaxMBBfUKfnJoDFyfWBNA2zbmgFbK_YFhbqgW6NAs6vQKzSYGViNgD0FAxYGVidXv4Ag-CiLkZk5sM1sjFHQgmsPN0EG1oDEgtQiIQam1DxhBnbwosvkYhEGLZdMYKYFtloV3FLLdYMz8ksUoMedpisA25IKAYl5CgFFmWWJyZWiDMpuriHOHrowC-KhiaA4HuFkYzEGFmBvPlWCQSEtOTklBdiqN0kxTzNJNTZOSjVLtTA1t0xONkg2MEhJlmSQwWeSFH5paQYuI1CH0AAY2sYyDCwlRaWpssBasyRJjoHZws1dDhpAQJ5vnSsAe5p3RQ
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQSQNWysBkYKibmppspmuSbJyqmwRiASuPVEtDi-Q0s1TQRmFfPzOPUBOvCNMI6IBbMXRZJaxMBBfUKfnJoDFyfWBNA2zbmgFbK_YFhbqgW6NAs6vQKzSYGVhNjIF1NWinuJs7fIzFyMwc2GI2xihmwXWHmyADa0BiQWqREANTap4wAzt4yWVysQiDlksmMMsC26wKbqnlusEZ-SUK0MNO0xWALUmFgMQ8hYCizLLE5EpRBmU31xBnD12YBfHQJFAcj3CwsRgDC7AvnyrBoJCWnJySAmzTm6SYp5mkGhsnpZqlWpiaWyYnGyQbGKQkSzLI4DNJCr-0PAOnR4ivT7yPp5-3NAOXEahraAAMd2MZBpaSotJUWWD9WZIkBw4kAJO0drk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrete+Few-Shot+Learning+for+Pan+Privacy&rft.jtitle=arXiv.org&rft.au=Gelbhart%2C+Roei&rft.au=Rubinstein%2C+Benjamin+I+P&rft.date=2020-06-23&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422