Discrete Few-Shot Learning for Pan Privacy
In this paper we present the first baseline results for the task of few-shot learning of discrete embedding vectors for image recognition. Few-shot learning is a highly researched task, commonly leveraged by recognition systems that are resource constrained to train on a small number of images per c...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
23.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper we present the first baseline results for the task of few-shot learning of discrete embedding vectors for image recognition. Few-shot learning is a highly researched task, commonly leveraged by recognition systems that are resource constrained to train on a small number of images per class. Few-shot systems typically store a continuous embedding vector of each class, posing a risk to privacy where system breaches or insider threats are a concern. Using discrete embedding vectors, we devise a simple cryptographic protocol, which uses one-way hash functions in order to build recognition systems that do not store their users' embedding vectors directly, thus providing the guarantee of computational pan privacy in a practical and wide-spread setting. |
---|---|
AbstractList | In this paper we present the first baseline results for the task of few-shot learning of discrete embedding vectors for image recognition. Few-shot learning is a highly researched task, commonly leveraged by recognition systems that are resource constrained to train on a small number of images per class. Few-shot systems typically store a continuous embedding vector of each class, posing a risk to privacy where system breaches or insider threats are a concern. Using discrete embedding vectors, we devise a simple cryptographic protocol, which uses one-way hash functions in order to build recognition systems that do not store their users' embedding vectors directly, thus providing the guarantee of computational pan privacy in a practical and wide-spread setting. |
Author | Rubinstein, Benjamin I P Gelbhart, Roei |
Author_xml | – sequence: 1 givenname: Roei surname: Gelbhart fullname: Gelbhart, Roei – sequence: 2 givenname: Benjamin surname: Rubinstein middlename: I P fullname: Rubinstein, Benjamin I P |
BookMark | eNrjYmDJy89LZWLgNDI2NtS1MDEy4mDgLS7OMjAwMDIzNzI1NeZk0HLJLE4uSi1JVXBLLdcNzsgvUfBJTSzKy8xLV0jLL1IISMxTCCjKLEtMruRhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjE0Mzc1Mzc3MTY-JUAQDwVTID |
ContentType | Paper |
Copyright | 2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
ID | FETCH-proquest_journals_24167567743 |
IEDL.DBID | BENPR |
IngestDate | Thu Oct 10 20:31:01 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-proquest_journals_24167567743 |
OpenAccessLink | https://www.proquest.com/docview/2416756774?pq-origsite=%requestingapplication% |
PQID | 2416756774 |
PQPubID | 2050157 |
ParticipantIDs | proquest_journals_2416756774 |
PublicationCentury | 2000 |
PublicationDate | 20200623 |
PublicationDateYYYYMMDD | 2020-06-23 |
PublicationDate_xml | – month: 06 year: 2020 text: 20200623 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2020 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 3.271066 |
SecondaryResourceType | preprint |
Snippet | In this paper we present the first baseline results for the task of few-shot learning of discrete embedding vectors for image recognition. Few-shot learning is... |
SourceID | proquest |
SourceType | Aggregation Database |
SubjectTerms | Cryptography Embedding Learning Object recognition Privacy |
Title | Discrete Few-Shot Learning for Pan Privacy |
URI | https://www.proquest.com/docview/2416756774 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQSQNWysBkYKibmppspmuSbJyqmwRiASuPVEtDi-Q0s1TQRmFfPzOPUBOvCNMI6IBbMXRZJaxMBBfUKfnJoDFyfWBNA2zbmgFbK_YFhbqgW6NAs6vQKzSYGViNgD0FAxYGVidXv4Ag-CiLkZk5sM1sjFHQgmsPN0EG1oDEgtQiIQam1DxhBnbwosvkYhEGLZdMYKYFtloV3FLLdYMz8ksUoMedpisA25IKAYl5CgFFmWWJyZWiDMpuriHOHrowC-KhiaA4HuFkYzEGFmBvPlWCQSEtOTklBdiqN0kxTzNJNTZOSjVLtTA1t0xONkg2MEhJlmSQwWeSFH5paQYuI1CH0AAY2sYyDCwlRaWpssBasyRJjoHZws1dDhpAQJ5vnSsAe5p3RQ |
link.rule.ids | 783,787,12777,21400,33385,33756,43612,43817 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQSQNWysBkYKibmppspmuSbJyqmwRiASuPVEtDi-Q0s1TQRmFfPzOPUBOvCNMI6IBbMXRZJaxMBBfUKfnJoDFyfWBNA2zbmgFbK_YFhbqgW6NAs6vQKzSYGVhNjIF1NWinuJs7fIzFyMwc2GI2xihmwXWHmyADa0BiQWqREANTap4wAzt4yWVysQiDlksmMMsC26wKbqnlusEZ-SUK0MNO0xWALUmFgMQ8hYCizLLE5EpRBmU31xBnD12YBfHQJFAcj3CwsRgDC7AvnyrBoJCWnJySAmzTm6SYp5mkGhsnpZqlWpiaWyYnGyQbGKQkSzLI4DNJCr-0PAOnR4ivT7yPp5-3NAOXEahraAAMd2MZBpaSotJUWWD9WZIkBw4kAJO0drk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrete+Few-Shot+Learning+for+Pan+Privacy&rft.jtitle=arXiv.org&rft.au=Gelbhart%2C+Roei&rft.au=Rubinstein%2C+Benjamin+I+P&rft.date=2020-06-23&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422 |