Medians are below joins in semimodular lattices of breadth 2
Let \(L\) be a lattice of finite length and let \(d\) denote the minimum path length metric on the covering graph of \(L\). For any \(\xi=(x_1,\dots,x_k)\in L^k\), an element \(y\) belonging to \(L\) is called a median of \(\xi\) if the sum \(d(y,x_1)+\cdots+d(y,x_k)\) is minimum. The lattice \(L\)...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
05.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Let \(L\) be a lattice of finite length and let \(d\) denote the minimum path length metric on the covering graph of \(L\). For any \(\xi=(x_1,\dots,x_k)\in L^k\), an element \(y\) belonging to \(L\) is called a median of \(\xi\) if the sum \(d(y,x_1)+\cdots+d(y,x_k)\) is minimum. The lattice \(L\) satisfies the \(c_1\)-median property if, for any \(\xi=(x_1,\dots,x_k)\in L^k\) and for any median \(y\) of \(\xi\), \(y\leq x_1\vee\dots\vee x_k\). Our main theorem asserts that if \(L\) is an upper semimodular lattice of finite length and the breadth of \(L\) is less than or equal to \(2\), then \(L\) satisfies the \(c_1\)-median property. Also, we give a construction that yields semimodular lattices, and we use a particular case of this construction to prove that our theorem is sharp in the sense that \(2\) cannot be replaced by \(3\). |
---|---|
AbstractList | Let \(L\) be a lattice of finite length and let \(d\) denote the minimum path length metric on the covering graph of \(L\). For any \(\xi=(x_1,\dots,x_k)\in L^k\), an element \(y\) belonging to \(L\) is called a median of \(\xi\) if the sum \(d(y,x_1)+\cdots+d(y,x_k)\) is minimum. The lattice \(L\) satisfies the \(c_1\)-median property if, for any \(\xi=(x_1,\dots,x_k)\in L^k\) and for any median \(y\) of \(\xi\), \(y\leq x_1\vee\dots\vee x_k\). Our main theorem asserts that if \(L\) is an upper semimodular lattice of finite length and the breadth of \(L\) is less than or equal to \(2\), then \(L\) satisfies the \(c_1\)-median property. Also, we give a construction that yields semimodular lattices, and we use a particular case of this construction to prove that our theorem is sharp in the sense that \(2\) cannot be replaced by \(3\). |
Author | White, Jeremy M Czédli, Gábor Powers, Robert C |
Author_xml | – sequence: 1 givenname: Gábor surname: Czédli fullname: Czédli, Gábor – sequence: 2 givenname: Robert surname: Powers middlename: C fullname: Powers, Robert C – sequence: 3 givenname: Jeremy surname: White middlename: M fullname: White, Jeremy M |
BookMark | eNqNirEKwjAUAIMoWLX_8MC5kL60tYObKC5u7iW1r5iSJpqX4u_bwQ9wOo67jVg672ghElQqz-oCcS1S5kFKidUBy1Il4nijzmjHoANBS9Z_YPBmduOAaTSj7yarA1gdo3kQg--hDaS7-ATciVWvLVP641bsL-f76Zq9gn9PxLEZ_BTcnBpUOVZ1oWSl_ru-TqY4zQ |
ContentType | Paper |
Copyright | 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Databases Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection ProQuest Engineering Database ProQuest Publicly Available Content database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
ID | FETCH-proquest_journals_23126843063 |
IEDL.DBID | 8FG |
IngestDate | Thu Oct 10 19:54:22 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-proquest_journals_23126843063 |
OpenAccessLink | https://www.proquest.com/docview/2312684306?pq-origsite=%requestingapplication% |
PQID | 2312684306 |
PQPubID | 2050157 |
ParticipantIDs | proquest_journals_2312684306 |
PublicationCentury | 2000 |
PublicationDate | 20191105 |
PublicationDateYYYYMMDD | 2019-11-05 |
PublicationDate_xml | – month: 11 year: 2019 text: 20191105 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2019 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 3.228299 |
SecondaryResourceType | preprint |
Snippet | Let \(L\) be a lattice of finite length and let \(d\) denote the minimum path length metric on the covering graph of \(L\). For any \(\xi=(x_1,\dots,x_k)\in... |
SourceID | proquest |
SourceType | Aggregation Database |
SubjectTerms | Lattice modules Lattices Theorems |
Title | Medians are below joins in semimodular lattices of breadth 2 |
URI | https://www.proquest.com/docview/2312684306 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60i-DNJz5qCeg16D6yDxAEZdcitBRR6K1k88BK3W03K9787U7CVg9Cj0MgIUOYb2byzQzAlQ79wLaWoqHyOY1CzWgmOKMCwYWX8Y3SsS1wHo3j4Wv0NGXTLuFmOlrl2iY6Qy1rYXPk1-iH2MYk6OHeLVfUTo2yv6vdCI1t8PwgSSylKy0ef3MsQZygxxz-M7MOO4o98CZ8qZp92FLVAew4yqUwh3Dr5thXhvBGkVIt6i_yXs9RnlfEqA_UobQUUbLgrSWoGVJrgvErl-0bCY7gsshfHoZ0feSsexRm9neF8Bh6GN2rEyAI4Uz6PNW8TCPByiwWUkhfi6AUGU_ZKfQ37XS2efkcdhHhM1c8x_rQa5tPdYEo2pYDp6oBePf5ePKM0ug7_wGFc3zW |
link.rule.ids | 783,787,12778,21401,33386,33757,43613,43818 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED-0RfTNT_yYGtDXoP1IbUEQlI2qWxkyYW8lnziZ7Wwq_vsmodMHYY8hkCNHuN_d5Xd3AJcqCkLbWgpHMqA4jhTBGacEcwMulCXXUiW2wHlUJPlr_DQl0y7hpjta5dImOkMtam5z5FfGD7GNSYyHe7f4xHZqlP1d7UZorINvW1WlHvj3_WL88ptlCZMb4zNH_wytQ4_BNvhjupDNDqzJahc2HOmS6z24dZPsK41oIxGT8_obvdczs55VSMsPo0VhSaJoTltLUdOoVshEsFS0byjch4tBf_KQ46XIsnsWuvy7RHQAnonv5SEgA-JEBDRVlKUxJyxLuOAiUDxkPKMpOYLeqpOOV2-fw2Y-GQ3L4WPxfAJbBu8zV0pHeuC1zZc8NZjasrNOcT_CB35c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Medians+are+below+joins+in+semimodular+lattices+of+breadth+2&rft.jtitle=arXiv.org&rft.au=Cz%C3%A9dli%2C+G%C3%A1bor&rft.au=Powers%2C+Robert+C&rft.au=White%2C+Jeremy+M&rft.date=2019-11-05&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422 |