Nanovortex-driven all-dielectric optical diffusion boosting and sorting concept for lab-on-a-chip platforms

The ever-growing field of microfluidics requires precise and flexible control over fluid flow at the micro- and nanoscales. Current constraints demand a variety of controllable components for performing different operations inside closed microchambers and microreactors. In this context, novel nanoph...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Valero, Adrià Canós, Kislov, Denis, Gurvitz, Egor A, Shamkhi, Hadi K, Redka, Dmitrii, Yankin, Sergey, Zemánek, Pavel, Shalin, Alexander S
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 24.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The ever-growing field of microfluidics requires precise and flexible control over fluid flow at the micro- and nanoscales. Current constraints demand a variety of controllable components for performing different operations inside closed microchambers and microreactors. In this context, novel nanophotonic approaches can significantly enhance existing capabilities and provide new functionalities via finely tuned light-matter interaction mechanisms. Here we propose a novel design, featuring a dual functionality on-chip: boosted optically-driven particle diffusion and nanoparticle sorting. Our methodology is based on a specially designed high-index dielectric nanoantenna, which strongly enhances spin-orbit angular momentum transfer from an incident laser beam to the scattered field. As a result, exceptionally compact, subwavelength optical nanovortices are formed and drive spiral motion of peculiar plasmonic nanoparticles via the efficient interplay between curled spin optical forces and radiation pressure. The nanovortex size is an order of magnitude smaller than that provided by conventional beam-based approaches. The nanoparticles mediate nano-confined fluid motion enabling nanomixing without a need of moving bulk elements inside a microchamber. Moreover, precise sorting of gold nanoparticles, demanded for on-chip separation and filtering, can be achieved by exploiting the non-trivial dependence of the curled optical forces on the nanoobject size. Altogether, this study introduces a versatile platform for further miniaturization of moving-part-free, optically driven microfluidic chips for fast chemical synthesis and analysis, preparation of emulsions, or generation of chemical gradients with light-controlled navigation of nanoparticles, viruses or biomolecules.
AbstractList The ever-growing field of microfluidics requires precise and flexible control over fluid flow at the micro- and nanoscales. Current constraints demand a variety of controllable components for performing different operations inside closed microchambers and microreactors. In this context, novel nanophotonic approaches can significantly enhance existing capabilities and provide new functionalities via finely tuned light-matter interaction mechanisms. Here we propose a novel design, featuring a dual functionality on-chip: boosted optically-driven particle diffusion and nanoparticle sorting. Our methodology is based on a specially designed high-index dielectric nanoantenna, which strongly enhances spin-orbit angular momentum transfer from an incident laser beam to the scattered field. As a result, exceptionally compact, subwavelength optical nanovortices are formed and drive spiral motion of peculiar plasmonic nanoparticles via the efficient interplay between curled spin optical forces and radiation pressure. The nanovortex size is an order of magnitude smaller than that provided by conventional beam-based approaches. The nanoparticles mediate nano-confined fluid motion enabling nanomixing without a need of moving bulk elements inside a microchamber. Moreover, precise sorting of gold nanoparticles, demanded for on-chip separation and filtering, can be achieved by exploiting the non-trivial dependence of the curled optical forces on the nanoobject size. Altogether, this study introduces a versatile platform for further miniaturization of moving-part-free, optically driven microfluidic chips for fast chemical synthesis and analysis, preparation of emulsions, or generation of chemical gradients with light-controlled navigation of nanoparticles, viruses or biomolecules.
Author Valero, Adrià Canós
Redka, Dmitrii
Shalin, Alexander S
Gurvitz, Egor A
Shamkhi, Hadi K
Kislov, Denis
Yankin, Sergey
Zemánek, Pavel
Author_xml – sequence: 1
  givenname: Adrià
  surname: Valero
  middlename: Canós
  fullname: Valero, Adrià Canós
– sequence: 2
  givenname: Denis
  surname: Kislov
  fullname: Kislov, Denis
– sequence: 3
  givenname: Egor
  surname: Gurvitz
  middlename: A
  fullname: Gurvitz, Egor A
– sequence: 4
  givenname: Hadi
  surname: Shamkhi
  middlename: K
  fullname: Shamkhi, Hadi K
– sequence: 5
  givenname: Dmitrii
  surname: Redka
  fullname: Redka, Dmitrii
– sequence: 6
  givenname: Sergey
  surname: Yankin
  fullname: Yankin, Sergey
– sequence: 7
  givenname: Pavel
  surname: Zemánek
  fullname: Zemánek, Pavel
– sequence: 8
  givenname: Alexander
  surname: Shalin
  middlename: S
  fullname: Shalin, Alexander S
BookMark eNqNi8sKwjAURIMo-Oo_XHAdqIltdS2KK1fuJU1TjcZ7Y5KKn28FP8DVDGfOTNkQCc2ATYSUS75eCTFmWYy3PM9FWYmikBN2PyqkF4Vk3rwJ9mUQlHO8scYZnYLVQD5ZrRw0tm27aAmhJorJ4gUUNhD777drQm18gpYCOFVzQq64vloP3qnU00ecs1GrXDTZL2dssd-dtgfuAz07E9P5Rl3AfjoLmW-Kcl1WK_mf9QF310ut
ContentType Paper
Copyright 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PTHSS
ID FETCH-proquest_journals_23095686743
IEDL.DBID BENPR
IngestDate Thu Oct 10 18:25:54 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_23095686743
OpenAccessLink https://www.proquest.com/docview/2309568674?pq-origsite=%requestingapplication%
PQID 2309568674
PQPubID 2050157
ParticipantIDs proquest_journals_2309568674
PublicationCentury 2000
PublicationDate 20191024
PublicationDateYYYYMMDD 2019-10-24
PublicationDate_xml – month: 10
  year: 2019
  text: 20191024
  day: 24
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2019
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.22765
SecondaryResourceType preprint
Snippet The ever-growing field of microfluidics requires precise and flexible control over fluid flow at the micro- and nanoscales. Current constraints demand a...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Angular momentum
Biomolecules
Chemical synthesis
Dependence
Dielectric strength
Emulsions
Fluid dynamics
Fluid flow
Laser beams
Microfluidics
Microreactors
Miniaturization
Momentum transfer
Nanoparticles
Organic chemistry
Particle diffusion
Radiation pressure
Stability
Title Nanovortex-driven all-dielectric optical diffusion boosting and sorting concept for lab-on-a-chip platforms
URI https://www.proquest.com/docview/2309568674
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwGP1wLYI3f-KPOQJ6DXZpTNqToHQOYWOIwm4jJhGLpa1tJ578283XdXoQdmsolLRpXl5f3tcHcBlJGxhEP26GIeVMK6qGTKKZSijOpY051g5PpmL8zB_m1_NOcKs7W-UaE1ugNoVGjfzKUWWsbBOS35QfFFOjcHe1i9Dogc_cl0LggX-bTGePvyoLE9Jx5vAf0Larx2gX_JkqbbUHWzbfh-3WdKnrA3h30FZ8otv1i5oKYYeoLKMmXWXTpJoUZSs1E4wxWaKuRRwprtGpTFRuSF1U7bFe1R4SR0CJG1Va5FRR_ZaWpMxUg7S0PoSLUfJ0N6brHi66t6he_N1zeAReXuT2GIhk2nIhrI6Zm4D2VSn8KWAUxJExwkbhCfQ3Xel08-kz2HGUIEZ0ZrwPXlMt7blbdpuXAfSi0f2ge8KuNflOfgCvq48O
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFH7ohujNn_hjakCvwS2NaXvyINaq2_AwYbcSk4jD0tS2E_9887JOD8JugUBImvZ7X75-Lw_gMgpNXyP6cT0IKGdKUjlgIZqphOQ8NDHH3OHRWKQv_HF6PW0Ft7q1VS4x0QO1tgo18itHlTGzTYT8pvykWDUK_662JTTWocsDF6sxUzy5_9VYmAgdYw7-wayPHck2dJ9laaodWDPFLmx4y6Wq9-DDAZv9Qq_rN9UVgg6ReU71bFGZZqaILb3QTLCIyRxVLeIocY0-ZeLO_6S2lW-rReYhcfSTuD2ltqCSqvdZScpcNkhK6324SO4mtyldzjBr36E6-1txcACdwhbmEEjIlOFCGBUz9_mZNynxSsCoH0daCxMFR9BbNdLx6u5z2Ewno2E2fBg_ncCWIwcx4jTjPeg01dycugDcvJ75p_wDbqSOgg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanovortex-driven+all-dielectric+optical+diffusion+boosting+and+sorting+concept+for+lab-on-a-chip+platforms&rft.jtitle=arXiv.org&rft.au=Valero%2C+Adri%C3%A0+Can%C3%B3s&rft.au=Kislov%2C+Denis&rft.au=Gurvitz%2C+Egor+A&rft.au=Shamkhi%2C+Hadi+K&rft.date=2019-10-24&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422