Stochastic Control of Tolman-Oppenheimer-Snyder Collapse of Zero-Pressure Stars to Black Holes: Rigorous Criteria for Density Bounds and Singularity Smoothing

The Tolman-Oppenheimer-Snyder description gives exact analytical solutions for an Einstein-matter system describing total gravitational collapse of a zero-pressure perfect-fluid sphere, representing a massive star which has exhausted its nuclear fuel. The star collapses to a point of infinite densit...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Author Miller, Steven D
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 15.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Tolman-Oppenheimer-Snyder description gives exact analytical solutions for an Einstein-matter system describing total gravitational collapse of a zero-pressure perfect-fluid sphere, representing a massive star which has exhausted its nuclear fuel. The star collapses to a point of infinite density within a finite comoving proper time interval \([0,t_{*}]\), and the exterior metric matches the Schwarzchild black hole metric. The description is re-expressed in terms of a 'density function' \(u(t)=(\rho(t)/\rho_{o}))^{1/3}=R^{-1}(t)\) for initial density \(u_{0}=R^{-1}(0)=1\) and radius \(R(0)\), whereby the general-relativistic formulation reduces to an autonomous nonlinear ODE for \(u(t)\). The solution blows up or is singular at \(t=t_{*}=\pi/2(8\pi G/3\rho_{o})^{1/2}\). The blowup interval \([0,t_{*}]\) is partitioned into domains \([0,t_{\epsilon}]\bigcup[t_{\epsilon},t_{*}]\),with \(t_{*}=t_{\epsilon}+|\epsilon|\) and \(|\epsilon|\ll 1\), so that \(t_{\epsilon}\) can be infinitesimally close to \(t_{*}\). Randomness or 'stochastic control' is introduced via the 'switching on' of specific (white-noise) perturbations at \(t=t_{\epsilon}\). Hybrid nonlinear ODES-SDES are then 'engineered' over the partition. Within the Ito interpretation, the resulting density function diffusion \(\overline{u(t)}\) is proved to be a martingale whose supremum, volatility and higher-order moments are finite, bounded and singularity free for all finite \(t>t_{\epsilon}\). The collapse is (comovingly) eternal but never becomes singular. Extensive and rigorous boundedness and no-blowup criteria are established via various methods, and blowup probability is always zero. The density singularity is therefore smoothed or 'noise-suppressed'. Within the Stratanovitch interpretation, the singularity formation probability is unity; however, null recurrence ensures the expected comoving time for this to occur is now infinite.
AbstractList The Tolman-Oppenheimer-Snyder description gives exact analytical solutions for an Einstein-matter system describing total gravitational collapse of a zero-pressure perfect-fluid sphere, representing a massive star which has exhausted its nuclear fuel. The star collapses to a point of infinite density within a finite comoving proper time interval \([0,t_{*}]\), and the exterior metric matches the Schwarzchild black hole metric. The description is re-expressed in terms of a 'density function' \(u(t)=(\rho(t)/\rho_{o}))^{1/3}=R^{-1}(t)\) for initial density \(u_{0}=R^{-1}(0)=1\) and radius \(R(0)\), whereby the general-relativistic formulation reduces to an autonomous nonlinear ODE for \(u(t)\). The solution blows up or is singular at \(t=t_{*}=\pi/2(8\pi G/3\rho_{o})^{1/2}\). The blowup interval \([0,t_{*}]\) is partitioned into domains \([0,t_{\epsilon}]\bigcup[t_{\epsilon},t_{*}]\),with \(t_{*}=t_{\epsilon}+|\epsilon|\) and \(|\epsilon|\ll 1\), so that \(t_{\epsilon}\) can be infinitesimally close to \(t_{*}\). Randomness or 'stochastic control' is introduced via the 'switching on' of specific (white-noise) perturbations at \(t=t_{\epsilon}\). Hybrid nonlinear ODES-SDES are then 'engineered' over the partition. Within the Ito interpretation, the resulting density function diffusion \(\overline{u(t)}\) is proved to be a martingale whose supremum, volatility and higher-order moments are finite, bounded and singularity free for all finite \(t>t_{\epsilon}\). The collapse is (comovingly) eternal but never becomes singular. Extensive and rigorous boundedness and no-blowup criteria are established via various methods, and blowup probability is always zero. The density singularity is therefore smoothed or 'noise-suppressed'. Within the Stratanovitch interpretation, the singularity formation probability is unity; however, null recurrence ensures the expected comoving time for this to occur is now infinite.
Author Miller, Steven D
Author_xml – sequence: 1
  givenname: Steven
  surname: Miller
  middlename: D
  fullname: Miller, Steven D
BookMark eNqNysFKw0AQxvFFFKzadxjwHEg3iQaPjUpviunJS1mSSbN1MxNndg99GZ_VFnwATx_8v9-NuSQmvDALWxSrrC6tvTZL1UOe5_bh0VZVsTA_beRudBp9Bw1TFA7AA2w5TI6yt3lGGtFPKFlLxx7lhEJws-JZfaJw9i6omgShjU4UIsM6uO4LNhxQn-DD71k4KTTiI4p3MLDAM5L6eIQ1J-oVHPXQetqn4OSc24k5jqdwZ64GFxSXf3tr7l9fts0mm4W_E2rcHTgJna6dtXVdFlVpV8X_1C8Yql3F
ContentType Paper
Copyright 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_22884354213
IEDL.DBID 8FG
IngestDate Thu Oct 10 20:27:22 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_22884354213
OpenAccessLink https://www.proquest.com/docview/2288435421?pq-origsite=%requestingapplication%
PQID 2288435421
PQPubID 2050157
ParticipantIDs proquest_journals_2288435421
PublicationCentury 2000
PublicationDate 20210515
PublicationDateYYYYMMDD 2021-05-15
PublicationDate_xml – month: 05
  year: 2021
  text: 20210515
  day: 15
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2021
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.3381147
SecondaryResourceType preprint
Snippet The Tolman-Oppenheimer-Snyder description gives exact analytical solutions for an Einstein-matter system describing total gravitational collapse of a...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Black holes
Density
Domains
Exact solutions
Gravitational collapse
Martingales
Massive stars
Nuclear fuels
Optimal control
Probabilistic methods
Probability theory
Randomness
Stochastic processes
Volatility
Title Stochastic Control of Tolman-Oppenheimer-Snyder Collapse of Zero-Pressure Stars to Black Holes: Rigorous Criteria for Density Bounds and Singularity Smoothing
URI https://www.proquest.com/docview/2288435421
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aInjziY9aBvS6yGY3u1svQmtrEVpLt0LxUrJpags2WbProRd_ir_VzHarB6HHPAgkM8wr38wQchNFzFq1oXDChDWsg-JKJ3ET66wwYUVmxGa-j9nIvX7QffGfxmxcBtyyEla5kYmFoJ5qgTHyW0qjyKp2n7r36YeDXaPwd7VsobFLqi5WwsNM8c7jb4yFBqG1mL1_YrbQHZ0DUh3wVJpDsiPVEdkrIJciOybfca7FnGOdZGitAeOgZzDS70uunOc0lWouF0tpnFitptIA-vg8zSTuepVGO-vUPiPBWowmg1xDEY6DLhZpuoPh4k0b69gDtjNARgNroMIDItbzFTSxn1IGXE0htuoL0ag4HS-1pZ2dOCHXnfao1XU2l5qUbJdN_h7JOyUVpZU8IxB40o8E9QIRJH7CokbIXUzI4TNGeSDZOaltO-li-_Il2acI88CCpqxGKrn5lFdWT-dJvSBGnVSb7f5gaEe9r_YPBYOgEg
link.rule.ids 786,790,12792,21416,33406,33777,43633,43838
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA-6IfrmJ35MPdDXIk2bNvNF2Nyous2xThi-jLTL3MA1Na0P-2f8W811nT4Ivl5CILnjvvK7O0KuOWfGq_Vjy49Y3QQotrQiOzLBCouNyuRs6rpYjdztecGL-zhiozLhlpWwyrVOLBT1RMWYI7-hlHNj2l1q36UfFk6Nwt_VcoTGJqliy01eIdVGq9cf_GRZqOcbn9n5o2gL69HeJdW-SKXeIxsy2SdbBegyzg7IV5ireCawUzI0V5BxUFMYqveFSKznNJXJTM4XUlthspxIDRjlizSTuOtVamWtivu0BOMz6gxyBUVCDgJs03QLg_mb0ia0BxxogKIGxkWFe8Ss50to4ESlDEQygdAYMMSjIjlcKMM9QzgkV-3WsBlY60uNS8HLxr_P5ByRSqISeUzAc6TLY-p4sRe5EeN1X9hYkiOmjApPshNS---k0_-XL8l2MOx2xp2H3tMZ2aEI-sD2pqxGKrn-lOfGaufRRcmab49NoZ4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+Control+of+Tolman-Oppenheimer-Snyder+Collapse+of+Zero-Pressure+Stars+to+Black+Holes%3A+Rigorous+Criteria+for+Density+Bounds+and+Singularity+Smoothing&rft.jtitle=arXiv.org&rft.au=Miller%2C+Steven+D&rft.date=2021-05-15&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422