Minimax optimal estimators for general additive functional estimation
In this paper, we observe a sparse mean vector through Gaussian noise and we aim at estimating some additive functional of the mean in the minimax sense. More precisely, we generalize the results of (Collier et al., 2017, 2019) to a very large class of functionals. The optimal minimax rate is shown...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
29.08.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we observe a sparse mean vector through Gaussian noise and we aim at estimating some additive functional of the mean in the minimax sense. More precisely, we generalize the results of (Collier et al., 2017, 2019) to a very large class of functionals. The optimal minimax rate is shown to depend on the polynomial approximation rate of the marginal functional, and optimal estimators achieving this rate are built. |
---|---|
AbstractList | In this paper, we observe a sparse mean vector through Gaussian noise and we aim at estimating some additive functional of the mean in the minimax sense. More precisely, we generalize the results of (Collier et al., 2017, 2019) to a very large class of functionals. The optimal minimax rate is shown to depend on the polynomial approximation rate of the marginal functional, and optimal estimators achieving this rate are built. |
Author | Collier, Olivier Comminges, Laëtitia |
Author_xml | – sequence: 1 givenname: Olivier surname: Collier fullname: Collier, Olivier – sequence: 2 givenname: Laëtitia surname: Comminges fullname: Comminges, Laëtitia |
BookMark | eNqNi7EKwjAURYMoWLX_EHAupC_WZpeKi5t7KTaRlJpX8xLx840guDodzuXcFZs7dHrGMpCyLNQOYMlyokEIAfsaqkpmrDlbZ-_di-MUEkeu6cOAnrhBz2_aaZ_mru9tsE_NTXTXYNH90iQbtjDdSDr_cs22x-ZyOBWTx0dMXTtg9OlDLYCCWqhSCflf9QZL2z2n |
ContentType | Paper |
Copyright | 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Engineering Collection Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
ID | FETCH-proquest_journals_22827081803 |
IEDL.DBID | 8FG |
IngestDate | Thu Oct 10 16:36:29 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-proquest_journals_22827081803 |
OpenAccessLink | https://www.proquest.com/docview/2282708180?pq-origsite=%requestingapplication% |
PQID | 2282708180 |
PQPubID | 2050157 |
ParticipantIDs | proquest_journals_2282708180 |
PublicationCentury | 2000 |
PublicationDate | 20190829 |
PublicationDateYYYYMMDD | 2019-08-29 |
PublicationDate_xml | – month: 08 year: 2019 text: 20190829 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2019 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 3.2236898 |
SecondaryResourceType | preprint |
Snippet | In this paper, we observe a sparse mean vector through Gaussian noise and we aim at estimating some additive functional of the mean in the minimax sense. More... |
SourceID | proquest |
SourceType | Aggregation Database |
SubjectTerms | Estimators Minimax technique Polynomials Random noise |
Title | Minimax optimal estimators for general additive functional estimation |
URI | https://www.proquest.com/docview/2282708180 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60i-DNJz5qCeg1uCbZ10lo2bUIW4oo9FaSTVYKbl9bwZO_3Uy6qwehx5CQkJDMN_PlYwbgTselUL4oqSxVQUWZcBpro2hQ-DwJWGJCp3bPR-HwTTxPgklDuNWNrLK1ic5Q60WBHPk9s7FBhPnX_MflimLVKPxdbUpo7IP3wKIIg684e_rlWFgYWY-Z_zOzDjuyI_DGcmnWx7Bn5idw4CSXRX0KaT6bzyr5RRb21Vbyg2C-iwpj4JpYT5K8bxNCE1T8oE0iCEFb5q4dahtncJulr4MhbdeeNrejnv7thZ9Dx4b55gKIkYoHWgpeSgQJHVto0ZxjBcsQnZpL6O6a6Wp39zUcWqhPkA1lSRc6m_WnubFwulE9d2Y98PrpaPxiW_l3-gM7m4Dh |
link.rule.ids | 783,787,12777,21400,33385,33756,43612,43817 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFH7ohujNn_hjakCvwdKkXXPyIKtV1-Fhwm4laRIZ2G2uE_zzzctaPQg7hoSElOR973398h7ArU4sVwG3VFpVUm4Fo4k2ikZlwEQUChN7tXs-irM3_jyJJg3hVjeyytYmekOt5yVy5Hehiw36mH8tuF98UqwahX9XmxIa29DlzGE1vhRPH385ljDuO4-Z_TOzHjvSfei-yoVZHsCWmR3CjpdclvURDPLpbFrJbzJ3t7aSHwTzXVQYA9fEeZLkfZ0QmqDiB20SQQhaM3ftUNc4hpt0MH7IaLt20ZyOuvjbCzuBjgvzzSkQIxWLtOTMSgQJnTho0YxhBcsYnZoz6G2a6Xxz9zXsZuN8WAyfRi8XsOdgXyAzGooedFbLL3PpoHWlrvz3-wFElYD4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimax+optimal+estimators+for+general+additive+functional+estimation&rft.jtitle=arXiv.org&rft.au=Collier%2C+Olivier&rft.au=Comminges%2C+La%C3%ABtitia&rft.date=2019-08-29&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422 |