Analysis of Automatic Annotation Suggestions for Hard Discourse-Level Tasks in Expert Domains

Many complex discourse-level tasks can aid domain experts in their work but require costly expert annotations for data creation. To speed up and ease annotations, we investigate the viability of automatically generated annotation suggestions for such tasks. As an example, we choose a task that is pa...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Schulz, Claudia, Meyer, Christian M, Kiesewetter, Jan, Sailer, Michael, Bauer, Elisabeth, Fischer, Martin R, Fischer, Frank, Gurevych, Iryna
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 06.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Many complex discourse-level tasks can aid domain experts in their work but require costly expert annotations for data creation. To speed up and ease annotations, we investigate the viability of automatically generated annotation suggestions for such tasks. As an example, we choose a task that is particularly hard for both humans and machines: the segmentation and classification of epistemic activities in diagnostic reasoning texts. We create and publish a new dataset covering two domains and carefully analyse the suggested annotations. We find that suggestions have positive effects on annotation speed and performance, while not introducing noteworthy biases. Envisioning suggestion models that improve with newly annotated texts, we contrast methods for continuous model adjustment and suggest the most effective setup for suggestions in future expert tasks.
AbstractList Many complex discourse-level tasks can aid domain experts in their work but require costly expert annotations for data creation. To speed up and ease annotations, we investigate the viability of automatically generated annotation suggestions for such tasks. As an example, we choose a task that is particularly hard for both humans and machines: the segmentation and classification of epistemic activities in diagnostic reasoning texts. We create and publish a new dataset covering two domains and carefully analyse the suggested annotations. We find that suggestions have positive effects on annotation speed and performance, while not introducing noteworthy biases. Envisioning suggestion models that improve with newly annotated texts, we contrast methods for continuous model adjustment and suggest the most effective setup for suggestions in future expert tasks.
Author Sailer, Michael
Schulz, Claudia
Kiesewetter, Jan
Fischer, Frank
Fischer, Martin R
Gurevych, Iryna
Bauer, Elisabeth
Meyer, Christian M
Author_xml – sequence: 1
  givenname: Claudia
  surname: Schulz
  fullname: Schulz, Claudia
– sequence: 2
  givenname: Christian
  surname: Meyer
  middlename: M
  fullname: Meyer, Christian M
– sequence: 3
  givenname: Jan
  surname: Kiesewetter
  fullname: Kiesewetter, Jan
– sequence: 4
  givenname: Michael
  surname: Sailer
  fullname: Sailer, Michael
– sequence: 5
  givenname: Elisabeth
  surname: Bauer
  fullname: Bauer, Elisabeth
– sequence: 6
  givenname: Martin
  surname: Fischer
  middlename: R
  fullname: Fischer, Martin R
– sequence: 7
  givenname: Frank
  surname: Fischer
  fullname: Fischer, Frank
– sequence: 8
  givenname: Iryna
  surname: Gurevych
  fullname: Gurevych, Iryna
BookMark eNqNjr0KwjAURoMoWLXvcMG50Cb9cS220sFNVymhpiW1JjW3EX17I_gATt8ZPg5nReZKKzEjHmUsCnYxpUviI_ZhGNI0o0nCPHLJFR_eKBF0C7md9J1PsoFcKT050gpOtusEfhGh1QYqbq5QSGy0NSiCo3iKAc4cbwhSQfkahZmgcB6pcEMWLR9Q-L9dk-2hPO-rYDT6YZ217p3FFWBNKUvjLMrSmP33-gCUEUWG
ContentType Paper
Copyright 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_22364717643
IEDL.DBID 8FG
IngestDate Thu Oct 10 16:52:05 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_22364717643
OpenAccessLink https://www.proquest.com/docview/2236471764?pq-origsite=%requestingapplication%
PQID 2236471764
PQPubID 2050157
ParticipantIDs proquest_journals_2236471764
PublicationCentury 2000
PublicationDate 20190606
PublicationDateYYYYMMDD 2019-06-06
PublicationDate_xml – month: 06
  year: 2019
  text: 20190606
  day: 06
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2019
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.2133625
SecondaryResourceType preprint
Snippet Many complex discourse-level tasks can aid domain experts in their work but require costly expert annotations for data creation. To speed up and ease...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Annotations
Diagnostic systems
Domains
Segmentation
Task complexity
Texts
Viability
Title Analysis of Automatic Annotation Suggestions for Hard Discourse-Level Tasks in Expert Domains
URI https://www.proquest.com/docview/2236471764
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60i-DNJz5qGdBrsPto0j1JtVuL2FK0Qi9S9pGVpbBbm92rv91M3NWD0GMIhCQM883j4xuAm7DrJDyUOjcRXcl0BC6Zn9icJX7Ee65DmEZ1yMmUj9-8p0VvURfcVE2rbHyicdRJEVON_NYxSue24N7d-pPR1CjqrtYjNHbBsh0hyKr7o8ffGovDhY6Y3X9u1mDH6ACsWbiWm0PYkfkR7BnKZayO4b3RA8EixUFVFkY8FQd5Xvy0x_G1-qDuDxkG6tgSqcuOw0zFBTEv2DPxfXAeqpXCLEcjWlziUJ-T5eoErkfB_GHMmjsta6tRy783uqfQ0um_PAMUqS9D16bpnhHpcUVSu4S-RtrIi3jK7XNobzvpYvv2JezrEMA35Cfehla5qeSVhtky6pi_7IB1H0xnL3o1-Qq-Actgh9c
link.rule.ids 783,787,12779,21402,33387,33758,43614,43819
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60RfTmEx9VB_QabB7dmJMUa4yaFsEIvUjIJpsShKR2k__vzproQeh5Ydhdlvnm8e03ANfJ0MpYIlRu4g6FoSJwYXiZyYzM42xkW4RpVIeczljw7jzPR_O24CZbWmXnE7WjzqqUauQ3llY6N13m3C2_DJoaRd3VdoTGJvQdWwEN_RT3H39rLBZzVcRs_3OzGjv8Xei_Jkux2oMNUe7DlqZcpvIAPjo9EKxyHDd1pcVTcVyW1U97HN-aBXV_6GGgii2Ruuw4KWRaEfPCCInvg1EiPyUWJWrR4honyk5RykO48h-i-8Do9hS3r0bGf2e0j6Cn0n9xDOjmnkhsk6Z7ctLj4kK5hFuFtNzhLGfmCQzWWTpdv3wJ20E0DePwafZyBjsqHPA0EYoNoFevGnGuILfmF_pevwHGAofu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Automatic+Annotation+Suggestions+for+Hard+Discourse-Level+Tasks+in+Expert+Domains&rft.jtitle=arXiv.org&rft.au=Schulz%2C+Claudia&rft.au=Meyer%2C+Christian+M&rft.au=Kiesewetter%2C+Jan&rft.au=Sailer%2C+Michael&rft.date=2019-06-06&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422