Non-adiabatic ponderomotive effects in photoemission from nanotips in intense mid-infrared laser fields
Transient near-fields around metallic nanotips drive many applications, including the generation of ultrafast electron pulses and their use in electron microscopy. We have investigated the electron emission from a gold nanotip driven by mid-infrared few-cycle laser pulses. We identify a low-energy p...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
15.05.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Transient near-fields around metallic nanotips drive many applications, including the generation of ultrafast electron pulses and their use in electron microscopy. We have investigated the electron emission from a gold nanotip driven by mid-infrared few-cycle laser pulses. We identify a low-energy peak in the kinetic energy spectrum and study its shift to higher energies with increasing laser intensities from \(1.7\) to \(3.7\cdot10^{11} \mathrm{W}/\mathrm{cm}^2\). The experimental observation of the upshift of the low-energy peak is compared to a simple model and numerical simulations, which show that the decay of the near-field on a nanometer scale results in non-adiabatic transfer of the ponderomotive potential to the kinetic energy of emitted electrons and in turn to a shift of the peak. We derive an analytic expression for the non-adiabatic ponderomotive shift, which, after the previously found quenching of the quiver motion, completes the understanding of the role of inhomogeneous fields in strong-field photoemission from nanostructures. |
---|---|
ISSN: | 2331-8422 |