Effects of deep superconducting gap minima and disorder on residual thermal transport in \(\mathrm{Sr_2 Ru O_4}\)

Recent thermal conductivity measurements on \(\mathrm{Sr_2 Ru O_4}\) [E. Hassinger et al., Phys. Rev. X 7, 011032 (2017)] were interpreted as favoring a pairing gap function with vertical line nodes while conflicting with chiral \(p\)-wave pairing. Motivated by this work we study the effects of deep...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Dodaro, John F, Wang, Zhiqiang, Kallin, Catherine
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 28.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent thermal conductivity measurements on \(\mathrm{Sr_2 Ru O_4}\) [E. Hassinger et al., Phys. Rev. X 7, 011032 (2017)] were interpreted as favoring a pairing gap function with vertical line nodes while conflicting with chiral \(p\)-wave pairing. Motivated by this work we study the effects of deep superconducting gap minima on impurity induced quasiparticle thermal transport in chiral \(p\)-wave models of \(\mathrm{Sr_2 Ru O_4}\). Combining a self-consistent T-matrix analysis and self-consistent Bogoliubov-de-Gennes calculations, we show that the dependence of the residual thermal conductivity on the normal state impurity scattering rate can be quite similar to the \(d\)-wave pairing state that was shown to fit the thermal conductivity measurements, provided the normal state impurity scattering rate is large compared with the deep gap minima. Consequently, thermal conductivity measurements on \(\mathrm{Sr_2RuO_4}\) can be reconciled with a chiral \(p\)-wave pairing state with deep gap minima. However, the data impose serious constraints on such models and these constraints are examined in the context of several different chiral \(p\)-wave models.
AbstractList Recent thermal conductivity measurements on \(\mathrm{Sr_2 Ru O_4}\) [E. Hassinger et al., Phys. Rev. X 7, 011032 (2017)] were interpreted as favoring a pairing gap function with vertical line nodes while conflicting with chiral \(p\)-wave pairing. Motivated by this work we study the effects of deep superconducting gap minima on impurity induced quasiparticle thermal transport in chiral \(p\)-wave models of \(\mathrm{Sr_2 Ru O_4}\). Combining a self-consistent T-matrix analysis and self-consistent Bogoliubov-de-Gennes calculations, we show that the dependence of the residual thermal conductivity on the normal state impurity scattering rate can be quite similar to the \(d\)-wave pairing state that was shown to fit the thermal conductivity measurements, provided the normal state impurity scattering rate is large compared with the deep gap minima. Consequently, thermal conductivity measurements on \(\mathrm{Sr_2RuO_4}\) can be reconciled with a chiral \(p\)-wave pairing state with deep gap minima. However, the data impose serious constraints on such models and these constraints are examined in the context of several different chiral \(p\)-wave models.
Author Kallin, Catherine
Wang, Zhiqiang
Dodaro, John F
Author_xml – sequence: 1
  givenname: John
  surname: Dodaro
  middlename: F
  fullname: Dodaro, John F
– sequence: 2
  givenname: Zhiqiang
  surname: Wang
  fullname: Wang, Zhiqiang
– sequence: 3
  givenname: Catherine
  surname: Kallin
  fullname: Kallin, Catherine
BookMark eNqNjs1KAzEURoMoWLUP4O6CG1205mei07VUuhPU5cAQJpk2pblJbxIRxHd3BB_A1YHvfItzwU4xomPsWvBl02rN7w19-o-laKeB85WSJ2wmlRKLtpHynM1z3nPO5cOj1FrN2HE9jm4oGeII1rkEuSZHQ0Rbh-JxC1uTIHj0wYBBC9bnSNYRRARy2dtqDlB2jsIvyWBOkQp4hO62C6bsKHy9US_htcJL33x3d1fsbDSH7OZ_vGQ3z-v3p80iUTxWl0u_j5VwUr0UQrerqb5R_3v9AOqXUqk
ContentType Paper
Copyright 2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.1810.00932
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_21158923343
IEDL.DBID BENPR
IngestDate Fri Sep 13 07:47:05 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_21158923343
OpenAccessLink https://www.proquest.com/docview/2115892334/abstract/?pq-origsite=%requestingapplication%
PQID 2115892334
PQPubID 2050157
ParticipantIDs proquest_journals_2115892334
PublicationCentury 2000
PublicationDate 20181228
PublicationDateYYYYMMDD 2018-12-28
PublicationDate_xml – month: 12
  year: 2018
  text: 20181228
  day: 28
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2018
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.171788
SecondaryResourceType preprint
Snippet Recent thermal conductivity measurements on \(\mathrm{Sr_2 Ru O_4}\) [E. Hassinger et al., Phys. Rev. X 7, 011032 (2017)] were interpreted as favoring a...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Conductivity
Constraint modelling
Dependence
Heat conductivity
Heat transfer
Impurities
Matrix methods
Scattering
Superconductivity
Thermal conductivity
Title Effects of deep superconducting gap minima and disorder on residual thermal transport in \(\mathrm{Sr_2 Ru O_4}\)
URI https://www.proquest.com/docview/2115892334/abstract/
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JSwMxFH50QfDmikstD_Sgh3Ha2ZqeBKW1CK2lKvRQGJJJoj3M0plWBNHfbjKdUfDQUwgJISThve8t-R7Ahes4rEW9tkFZKzAc6UmjS4lrSO6KjhXwgOcUG8ORN3hxHqbutAKD8i-MTqssZWIuqHkcaB-5qQwVlyg0YjsmZdoLECzNm2Rh6PpROs5aFNOoQt1qOzpgW7_tjcaTX3-L5XUUerbXgc2cxsuk6cf8_VqpOJ3d1dUFSP6J41zH9HegPqaJSHehIqI92MpTM4NsHxZrguEMY4lciASzlZqmzFjN1KoUD77SBDVDSEiRRhx5waeJcYTKls4_W6GGeaFuSy5znEc4u5wpvPqWhp9PqW_hZIWPvvM1uzqA837v-W5glPv0ixeX-X_nYx9CLYojcQRIubTbnGo2coUUrBaRNvEC0RW0IyVj7Bgam1Y62Tx8CtsKPhCd3GGRBtSW6UqcKRW9ZE2okv59s7gD1Rt-934Aa7Kblw
link.rule.ids 786,790,12792,21416,27958,33408,33779,43635,43840
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwED1BEYKNT_FR4CQYYAhtEydNJwZEKdAWBEXqUClyYhs6NEmTFiEh_jtnNwWJoZMHW5ZlW_fenc_vAM5cxsIq92oWD6uRxZSnrAb3XUsJV9btSETCSGx0ul7rld333X4RcMuLtMq5TTSGWiSRjpFXyFFxfWIjDrtKx5auGqVfV4sSGsuwwhyCTv1TvHn7G2OxvToxZmf2mGmkuyo8-xx-XBKs6Yyuhi468s8EG1xpbsDKE09ltglLMt6CVZOOGeXbMJ6JCueYKBRSpphPaRi5rlqdlcAG33iKWhVkxJHHAkWhoYlJjOQ_mw9WqKndSLdz_XIcxjg4HxBHfc9GXy9ZYOPzFB8D9j242IHT5k3vumXN1xkUtywP_vbE2YVSnMRyD5AL5dQE1wrkxA7sqq8c34tkQ_K6UmEY7kN50UwHi7tPYK3V67SD9l334RDWiT74OrnD9stQmmRTeUQQPQmPzTn8AI0Cl00
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+deep+superconducting+gap+minima+and+disorder+on+residual+thermal+transport+in+%5C%28%5Cmathrm%7BSr_2+Ru+O_4%7D%5C%29&rft.jtitle=arXiv.org&rft.au=Dodaro%2C+John+F&rft.au=Wang%2C+Zhiqiang&rft.au=Kallin%2C+Catherine&rft.date=2018-12-28&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1810.00932