Round Trip Time Prediction Using the Symbolic Function Network Approach

In this paper, we develop a novel approach to model the Internet round trip time using a recently proposed symbolic type neural network model called symbolic function network. The developed predictor is shown to have good generalization performance and simple representation compared to the multilaye...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Eskander, George S, Atiya, Amir, Kil To Chong, Kim, Hyongsuk, Sung Goo Yoo
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 09.08.2008
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we develop a novel approach to model the Internet round trip time using a recently proposed symbolic type neural network model called symbolic function network. The developed predictor is shown to have good generalization performance and simple representation compared to the multilayer perceptron based predictors.
AbstractList In this paper, we develop a novel approach to model the Internet round trip time using a recently proposed symbolic type neural network model called symbolic function network. The developed predictor is shown to have good generalization performance and simple representation compared to the multilayer perceptron based predictors.
Author Sung Goo Yoo
Kil To Chong
Eskander, George S
Kim, Hyongsuk
Atiya, Amir
Author_xml – sequence: 1
  givenname: George
  surname: Eskander
  middlename: S
  fullname: Eskander, George S
– sequence: 2
  givenname: Amir
  surname: Atiya
  fullname: Atiya, Amir
– sequence: 3
  fullname: Kil To Chong
– sequence: 4
  givenname: Hyongsuk
  surname: Kim
  fullname: Kim, Hyongsuk
– sequence: 5
  fullname: Sung Goo Yoo
BookMark eNqNyssKgkAYQOEhCrLyHX5oLYwz3lpGZK0iytZiOuWYzthciN4-oR6g1Vl8Z4bGQgo2Qg6h1PeSgJApcrVuMMYkikkYUgftTtKKCjLFe8h4x-CoWMVLw6WAi-biDqZmcH53V9nyElIrvnZg5iXVA9Z9r2RR1gs0uRWtZu6vc7RMt9lm7w38tEybvJFWiYFyglc4iqmfBPS_6wMwGD0o
ContentType Paper
Copyright 2008. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2008. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_20906731843
IEDL.DBID BENPR
IngestDate Thu Oct 10 22:55:54 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_20906731843
OpenAccessLink https://www.proquest.com/docview/2090673184?pq-origsite=%requestingapplication%
PQID 2090673184
PQPubID 2050157
ParticipantIDs proquest_journals_2090673184
PublicationCentury 2000
PublicationDate 20080809
PublicationDateYYYYMMDD 2008-08-09
PublicationDate_xml – month: 08
  year: 2008
  text: 20080809
  day: 09
PublicationDecade 2000
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2008
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 2.7103322
SecondaryResourceType preprint
Snippet In this paper, we develop a novel approach to model the Internet round trip time using a recently proposed symbolic type neural network model called symbolic...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Multilayer perceptrons
Neural networks
Title Round Trip Time Prediction Using the Symbolic Function Network Approach
URI https://www.proquest.com/docview/2090673184
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB7sLoK3-kJtLQG9BvaRzaYnUdltEbostUJvJdnN3tS6Ww9e_O1O0lQPQo9hICEhmZlv5ssMwK2wOJmFNNQpo0xyRWXNBFWJShMleaVt4flZwacv7GmZLF3ArXO0yp1OtIq6fq9MjBxB-tj0VEFAcrf-oKZrlMmuuhYaPfAjRAqBB_5DVpTz3yhLxFP0meN_itZaj7wPfinXuj2GA_12AoeWdFl1pzCZm55GZIHvlpivGKRsTdrEHBWxqXyC3hl5_npVpngvydEEWVmxpW6Te1cP_Axu8mzxOKW71VfuhnSrv_3E5-Ah1NcXQBhTDRciqQMWsoZHSqK_nzQ8kOMqjVR8CcN9M13tFw_gaMt2MISHIXib9lNfo0ndqBH0RD4ZudPD0ew7-wE-r4Cm
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgE2I3nuIxIBJcI61tmnYnhBBdga2aoEi7VUmb3oDRjgP_fnaWwQFp50iJYiX-_PhsA9zE1k8WHvdMJLhQUnNViZjrUEehVrI0tvH8JJPpm3iahTMXcGsdrXKtE62irj5LipGjkz6kmSrokNzOvzhNjaLsqhuhsQ1dESBWU6V4MvqNsfgyQos5-KdmLXYke9Cdqrlp9mHLfBzAjqVclu0hjF5oohHL8dcyKsRg04aSJiQoZhP5DG0z9vrzrql1L0sQgOxatiJuszvXDfwIrpOH_D7l69ML9z7a4u82wTF00NE3J8CE0LWM47AaCE_U0tcKrf2wlgM1LCNfB6fQ37TT2eblK9hN88m4GD9mz-fQW_EeiPrQh86i-TYXCK4LfWkluAQxeIAa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Round+Trip+Time+Prediction+Using+the+Symbolic+Function+Network+Approach&rft.jtitle=arXiv.org&rft.au=Eskander%2C+George+S&rft.au=Atiya%2C+Amir&rft.au=Kil+To+Chong&rft.au=Kim%2C+Hyongsuk&rft.date=2008-08-09&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422