Round Trip Time Prediction Using the Symbolic Function Network Approach
In this paper, we develop a novel approach to model the Internet round trip time using a recently proposed symbolic type neural network model called symbolic function network. The developed predictor is shown to have good generalization performance and simple representation compared to the multilaye...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
09.08.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we develop a novel approach to model the Internet round trip time using a recently proposed symbolic type neural network model called symbolic function network. The developed predictor is shown to have good generalization performance and simple representation compared to the multilayer perceptron based predictors. |
---|---|
AbstractList | In this paper, we develop a novel approach to model the Internet round trip time using a recently proposed symbolic type neural network model called symbolic function network. The developed predictor is shown to have good generalization performance and simple representation compared to the multilayer perceptron based predictors. |
Author | Sung Goo Yoo Kil To Chong Eskander, George S Kim, Hyongsuk Atiya, Amir |
Author_xml | – sequence: 1 givenname: George surname: Eskander middlename: S fullname: Eskander, George S – sequence: 2 givenname: Amir surname: Atiya fullname: Atiya, Amir – sequence: 3 fullname: Kil To Chong – sequence: 4 givenname: Hyongsuk surname: Kim fullname: Kim, Hyongsuk – sequence: 5 fullname: Sung Goo Yoo |
BookMark | eNqNyssKgkAYQOEhCrLyHX5oLYwz3lpGZK0iytZiOuWYzthciN4-oR6g1Vl8Z4bGQgo2Qg6h1PeSgJApcrVuMMYkikkYUgftTtKKCjLFe8h4x-CoWMVLw6WAi-biDqZmcH53V9nyElIrvnZg5iXVA9Z9r2RR1gs0uRWtZu6vc7RMt9lm7w38tEybvJFWiYFyglc4iqmfBPS_6wMwGD0o |
ContentType | Paper |
Copyright | 2008. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2008. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
ID | FETCH-proquest_journals_20906731843 |
IEDL.DBID | BENPR |
IngestDate | Thu Oct 10 22:55:54 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-proquest_journals_20906731843 |
OpenAccessLink | https://www.proquest.com/docview/2090673184?pq-origsite=%requestingapplication% |
PQID | 2090673184 |
PQPubID | 2050157 |
ParticipantIDs | proquest_journals_2090673184 |
PublicationCentury | 2000 |
PublicationDate | 20080809 |
PublicationDateYYYYMMDD | 2008-08-09 |
PublicationDate_xml | – month: 08 year: 2008 text: 20080809 day: 09 |
PublicationDecade | 2000 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2008 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 2.7103322 |
SecondaryResourceType | preprint |
Snippet | In this paper, we develop a novel approach to model the Internet round trip time using a recently proposed symbolic type neural network model called symbolic... |
SourceID | proquest |
SourceType | Aggregation Database |
SubjectTerms | Multilayer perceptrons Neural networks |
Title | Round Trip Time Prediction Using the Symbolic Function Network Approach |
URI | https://www.proquest.com/docview/2090673184 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB7sLoK3-kJtLQG9BvaRzaYnUdltEbostUJvJdnN3tS6Ww9e_O1O0lQPQo9hICEhmZlv5ssMwK2wOJmFNNQpo0xyRWXNBFWJShMleaVt4flZwacv7GmZLF3ArXO0yp1OtIq6fq9MjBxB-tj0VEFAcrf-oKZrlMmuuhYaPfAjRAqBB_5DVpTz3yhLxFP0meN_itZaj7wPfinXuj2GA_12AoeWdFl1pzCZm55GZIHvlpivGKRsTdrEHBWxqXyC3hl5_npVpngvydEEWVmxpW6Te1cP_Axu8mzxOKW71VfuhnSrv_3E5-Ah1NcXQBhTDRciqQMWsoZHSqK_nzQ8kOMqjVR8CcN9M13tFw_gaMt2MISHIXib9lNfo0ndqBH0RD4ZudPD0ew7-wE-r4Cm |
link.rule.ids | 783,787,12777,21400,33385,33756,43612,43817 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgE2I3nuIxIBJcI61tmnYnhBBdga2aoEi7VUmb3oDRjgP_fnaWwQFp50iJYiX-_PhsA9zE1k8WHvdMJLhQUnNViZjrUEehVrI0tvH8JJPpm3iahTMXcGsdrXKtE62irj5LipGjkz6kmSrokNzOvzhNjaLsqhuhsQ1dESBWU6V4MvqNsfgyQos5-KdmLXYke9Cdqrlp9mHLfBzAjqVclu0hjF5oohHL8dcyKsRg04aSJiQoZhP5DG0z9vrzrql1L0sQgOxatiJuszvXDfwIrpOH_D7l69ML9z7a4u82wTF00NE3J8CE0LWM47AaCE_U0tcKrf2wlgM1LCNfB6fQ37TT2eblK9hN88m4GD9mz-fQW_EeiPrQh86i-TYXCK4LfWkluAQxeIAa |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Round+Trip+Time+Prediction+Using+the+Symbolic+Function+Network+Approach&rft.jtitle=arXiv.org&rft.au=Eskander%2C+George+S&rft.au=Atiya%2C+Amir&rft.au=Kil+To+Chong&rft.au=Kim%2C+Hyongsuk&rft.date=2008-08-09&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422 |