Ensemble Learning Independent Component Analysis of Normal Galaxy Spectra
In this paper, we employe a new statistical analysis technique, Ensemble Learning for Independent Component Analysis (EL-ICA), on the synthetic galaxy spectra from a newly released high resolution evolutionary model by Bruzual & Charlot. We find that EL-ICA can sufficiently compress the syntheti...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
09.10.2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we employe a new statistical analysis technique, Ensemble Learning for Independent Component Analysis (EL-ICA), on the synthetic galaxy spectra from a newly released high resolution evolutionary model by Bruzual & Charlot. We find that EL-ICA can sufficiently compress the synthetic galaxy spectral library to 6 non-negative Independent Components (ICs), which are good templates to model huge amount of normal galaxy spectra, such as the galaxy spectra in the Sloan Digital Sky Survey (SDSS). Important spectral parameters, such as starlight reddening, stellar velocity dispersion, stellar mass and star formation histories, can be given simultaneously by the fit. Extensive tests show that the fit and the derived parameters are reliable for galaxy spectra with the typical quality of the SDSS. |
---|---|
AbstractList | In this paper, we employe a new statistical analysis technique, Ensemble Learning for Independent Component Analysis (EL-ICA), on the synthetic galaxy spectra from a newly released high resolution evolutionary model by Bruzual & Charlot. We find that EL-ICA can sufficiently compress the synthetic galaxy spectral library to 6 non-negative Independent Components (ICs), which are good templates to model huge amount of normal galaxy spectra, such as the galaxy spectra in the Sloan Digital Sky Survey (SDSS). Important spectral parameters, such as starlight reddening, stellar velocity dispersion, stellar mass and star formation histories, can be given simultaneously by the fit. Extensive tests show that the fit and the derived parameters are reliable for galaxy spectra with the typical quality of the SDSS. |
Author | Wang, Junxian Wang, Tinggui Lu, Honglin Cheng, Li Zhou, Hongyan Zhuang, Zhenquan Dong, Xiaobo |
Author_xml | – sequence: 1 givenname: Honglin surname: Lu fullname: Lu, Honglin – sequence: 2 givenname: Hongyan surname: Zhou fullname: Zhou, Hongyan – sequence: 3 givenname: Junxian surname: Wang fullname: Wang, Junxian – sequence: 4 givenname: Tinggui surname: Wang fullname: Wang, Tinggui – sequence: 5 givenname: Xiaobo surname: Dong fullname: Dong, Xiaobo – sequence: 6 givenname: Zhenquan surname: Zhuang fullname: Zhuang, Zhenquan – sequence: 7 givenname: Li surname: Cheng fullname: Cheng, Li |
BookMark | eNqNjL0KwjAURoMoWLWrc8DZepM0akcp_hTERXeJeiuVNKlJFfv2dvABXM53ho8zIF1jDRIyZhDFSylhptyneEcgGfB43iEBF4JNlzHnfRJ6_wAAPl9wKUVAsrXxWF400j0qZwpzp5m5YYUtTE1TW1ZtvLWVUbrxhac2pwfrSqXpVmn1aeixwmvt1Ij0cqU9hr8dkslmfUp308rZ5wt9fX7Yl2sr_swhAZbIJOHiv9cXjqpDsg |
ContentType | Paper |
Copyright | Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at http://arxiv.org/abs/astro-ph/0510246. |
Copyright_xml | – notice: Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at http://arxiv.org/abs/astro-ph/0510246. |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
DOI | 10.48550/arxiv.0510246 |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Engineering Collection ProQuest Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
ID | FETCH-proquest_journals_20901959923 |
IEDL.DBID | BENPR |
IngestDate | Thu Oct 10 19:48:17 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-proquest_journals_20901959923 |
OpenAccessLink | https://www.proquest.com/docview/2090195992?pq-origsite=%requestingapplication% |
PQID | 2090195992 |
PQPubID | 2050157 |
ParticipantIDs | proquest_journals_2090195992 |
PublicationCentury | 2000 |
PublicationDate | 20051009 |
PublicationDateYYYYMMDD | 2005-10-09 |
PublicationDate_xml | – month: 10 year: 2005 text: 20051009 day: 09 |
PublicationDecade | 2000 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2005 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 2.6295903 |
SecondaryResourceType | preprint |
Snippet | In this paper, we employe a new statistical analysis technique, Ensemble Learning for Independent Component Analysis (EL-ICA), on the synthetic galaxy spectra... |
SourceID | proquest |
SourceType | Aggregation Database |
SubjectTerms | Galactic evolution Galaxies Independent component analysis Mathematical models Parameters Sky surveys (astronomy) Spectra Star & galaxy formation Star formation Statistical analysis Stellar mass |
Title | Ensemble Learning Independent Component Analysis of Normal Galaxy Spectra |
URI | https://www.proquest.com/docview/2090195992 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED9ci-Cbn_gxR0BfoyVd0-ZJUNptwsoQhb2NpE1FqO3WVpkv_u0mNZ0Pwt4SAgkXkrv7XXK_A7hWGo57QlLsu0zgYSoFDijlmCggxoifCS517vA0puOX4ePcm5uAW22-VXY6sVXUaZnoGLkC6UzntjFG7pYrrKtG6ddVU0KjBzZRSMGxwL4P49nTJspCqK98ZveXrbEl77rl1frt80afRTKk_zRwa1aifbBnfCmrA9iRxSHstr8xk_oIJmFRy3eRS2ToT1_RZFOutkH6DpeFbnWUIqjMUKy9zxyNeM7XX0jXlW8qfgxXUfj8MMbd-gtzeOrFn6juCViFmvAUECWaus-V1BEa1GQBVxIrKMmTVGG8xDuD_raZzrcPX8Bex0nqsD5YTfUhL5W1bcQAekE0GpiNVb3pd_gDWJOHRQ |
link.rule.ids | 783,787,12777,21400,27937,33385,33756,43612,43817 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90RfTNT_yYGtDX6EzbdH0SlM5WtzJkwt5K0mYi1Ha2VeZ_b66280HYWyCQkHC5u9_l7ncAl1rDCVsqTh3TldRKlKR9zgVlGoi5zJlJobB2eBRy_8V6nNrTJuBWNmmVrU6sFXWSxxgj1yDdxdo212W38w-KXaPwd7VpobEOBlJVafBl3Hnh-HkZZWHc0T6z-cvWWJN3XYti8fZ1hbLILP5PA9dmZbANxljMVbEDayrbhY06GzMu9yDwslK9y1SRhv70lQTLdrUVwTecZzhqKUVIPiMhep8peRCpWHwT7CtfFWIfLgbe5N6n7f5RIzxl9HdU8wA6mV7wEAhnSN1nKt6TCGpmfcFutAFiIk40xovtI-iuWul49fQ5bPqT0TAaBuHTCWy1_KQ9twudqvhUp9ryVvKsud4fhk2IKA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+Learning+Independent+Component+Analysis+of+Normal+Galaxy+Spectra&rft.jtitle=arXiv.org&rft.au=Lu%2C+Honglin&rft.au=Zhou%2C+Hongyan&rft.au=Wang%2C+Junxian&rft.au=Wang%2C+Tinggui&rft.date=2005-10-09&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.0510246 |