Classical diffusion in double-delta-kicked particles

We investigate the classical chaotic diffusion of atoms subjected to {\em pairs} of closely spaced pulses (`kicks) from standing waves of light (the \(2\delta\)-KP). Recent experimental studies with cold atoms implied an underlying classical diffusion of type very different from the well-known parad...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Stocklin, M M A, Monteiro, T S
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 12.04.2006
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We investigate the classical chaotic diffusion of atoms subjected to {\em pairs} of closely spaced pulses (`kicks) from standing waves of light (the \(2\delta\)-KP). Recent experimental studies with cold atoms implied an underlying classical diffusion of type very different from the well-known paradigm of Hamiltonian chaos, the Standard Map. The kicks in each pair are separated by a small time interval \(\epsilon \ll 1\), which together with the kick strength \(K\), characterizes the transport. Phase space for the \(2\delta\)-KP is partitioned into momentum `cells' partially separated by momentum-trapping regions where diffusion is slow. We present here an analytical derivation of the classical diffusion for a \(2\delta\)-KP including all important correlations which were used to analyze the experimental data. We find a new asymptotic (\(t \to \infty\)) regime of `hindered' diffusion: while for the Standard Map the diffusion rate, for \(K \gg 1\), \(D \sim K^2/2[1- J_2(K)..]\) oscillates about the uncorrelated, rate \(D_0 =K^2/2\), we find analytically, that the \(2\delta\)-KP can equal, but never diffuses faster than, a random walk rate. We argue this is due to the destruction of the important classical `accelerator modes' of the Standard Map. We analyze the experimental regime \(0.1\lesssim K\epsilon \lesssim 1\), where quantum localisation lengths \(L \sim \hbar^{-0.75}\) are affected by fractal cell boundaries. We find an approximate asymptotic diffusion rate \(D\propto K^3\epsilon\), in correspondence to a \(D\propto K^3\) regime in the Standard Map associated with 'golden-ratio' cantori.
AbstractList We investigate the classical chaotic diffusion of atoms subjected to {\em pairs} of closely spaced pulses (`kicks) from standing waves of light (the \(2\delta\)-KP). Recent experimental studies with cold atoms implied an underlying classical diffusion of type very different from the well-known paradigm of Hamiltonian chaos, the Standard Map. The kicks in each pair are separated by a small time interval \(\epsilon \ll 1\), which together with the kick strength \(K\), characterizes the transport. Phase space for the \(2\delta\)-KP is partitioned into momentum `cells' partially separated by momentum-trapping regions where diffusion is slow. We present here an analytical derivation of the classical diffusion for a \(2\delta\)-KP including all important correlations which were used to analyze the experimental data. We find a new asymptotic (\(t \to \infty\)) regime of `hindered' diffusion: while for the Standard Map the diffusion rate, for \(K \gg 1\), \(D \sim K^2/2[1- J_2(K)..]\) oscillates about the uncorrelated, rate \(D_0 =K^2/2\), we find analytically, that the \(2\delta\)-KP can equal, but never diffuses faster than, a random walk rate. We argue this is due to the destruction of the important classical `accelerator modes' of the Standard Map. We analyze the experimental regime \(0.1\lesssim K\epsilon \lesssim 1\), where quantum localisation lengths \(L \sim \hbar^{-0.75}\) are affected by fractal cell boundaries. We find an approximate asymptotic diffusion rate \(D\propto K^3\epsilon\), in correspondence to a \(D\propto K^3\) regime in the Standard Map associated with 'golden-ratio' cantori.
Author Stocklin, M M A
Monteiro, T S
Author_xml – sequence: 1
  givenname: M
  surname: Stocklin
  middlename: M A
  fullname: Stocklin, M M A
– sequence: 2
  givenname: T
  surname: Monteiro
  middlename: S
  fullname: Monteiro, T S
BookMark eNqNyrEOwiAUQFFiNLFqV-cmztTXByh7o_ED3BssNKElUEsxfr4OfoDTHc7dkKUP3hCyr6DkUgg4qultXyVwkCDlgmTIWEUlR1yTPMYeAPB0RiFYRnjtVIy2Va7QtutStMEX1hc6pIczVBs3KzrYdjC6GNU029aZuCOrTrlo8l-35HC93OsbHafwTCbOTR_S5L_UIEiBgAjA_rs-4Bo7_Q
ContentType Paper
Copyright Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at http://arxiv.org/abs/physics/0408088.
Copyright_xml – notice: Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at http://arxiv.org/abs/physics/0408088.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.48550/arxiv.0408088
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
ProQuest Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_20852022003
IEDL.DBID 8FG
IngestDate Thu Oct 10 17:46:40 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_20852022003
OpenAccessLink https://www.proquest.com/docview/2085202200?pq-origsite=%requestingapplication%
PQID 2085202200
PQPubID 2050157
ParticipantIDs proquest_journals_2085202200
PublicationCentury 2000
PublicationDate 20060412
PublicationDateYYYYMMDD 2006-04-12
PublicationDate_xml – month: 04
  year: 2006
  text: 20060412
  day: 12
PublicationDecade 2000
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2006
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 2.642446
SecondaryResourceType preprint
Snippet We investigate the classical chaotic diffusion of atoms subjected to {\em pairs} of closely spaced pulses (`kicks) from standing waves of light (the...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Asymptotic properties
Cold atoms
Correlation analysis
Diffusion rate
Momentum
Random walk
Standing waves
Title Classical diffusion in double-delta-kicked particles
URI https://www.proquest.com/docview/2085202200
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60i-DNJz5qWdBr7D6zyUlQdi1CSxGF3spmN4XF0m73IZ787WbSrHrqMQQSMkwmM99M5gO4CwWlwYI7RKhQhwTUyUgaMkloyBfCEZHSMszojid09B68zMKZAdxqU1bZ2URtqPN1hhj5ELkkPfwW6jyUG4KsUZhdNRQa-2C5XhRh8MWS51-MxaOR8pj9ba9G3bprmFZfxee90lzmGLKV__ZXPyrJEVjTtJTVMezJ1Qkc6FrMrD6FQBNVovBspC9pEc-yi5Wdr1uxlCSXyyYlH4W6frlddoVtZ3CbxG9PI9JtNTdaUs__zuSfQ0-F-_ICbB4ql81FqXEeqPvGeC5SXzKWucIVmX8J_V0rXe2evobDLYiA3Qr70GuqVt6oZ7URAy27AViP8WT6qkbj7_gHlkh-MQ
link.rule.ids 783,787,12777,21400,27937,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90Rdybn-icWtDXuHZtsuZJUDaqbmXIhL2Vps2gbGy1H-Kfb65L1ac9BxJyXO7jd5f7AdxTwZi74BYRKtUhLrNiElFPEkb5QlhioLQMK7qTgPkf7uuczjXgVui2ysYm1oY62cSIkfeQS7KP30Ktx-yTIGsUVlc1hcY-GDiqSiVfxtMwmL7_oix9NlAxs7Od1lgP7-pF-Xf69aB017M03cp_C1y7ldERGNMok_kx7Mn1CRzU3ZhxcQpuTVWJ4jORwKRCRMtM12ayqcRKkkSuyogsU_UAEzNrWtvO4G40nD37pDkq1HpShH-3cs6hpRJ-eQEmpypos1FunLvqxXk8EZEjPS-2hS1i5xK6u3bq7F6-hUN_NhmH45fg7QraW0gBZxd2oVXmlbxWTrYUN1qSP93bf7c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classical+diffusion+in+double-delta-kicked+particles&rft.jtitle=arXiv.org&rft.au=Stocklin%2C+M+M+A&rft.au=Monteiro%2C+T+S&rft.date=2006-04-12&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.0408088