Iterative Expectation for Multi Period Information Retrieval

Many Information Retrieval (IR) models make use of offline statistical techniques to score documents for ranking over a single period, rather than use an online, dynamic system that is responsive to users over time. In this paper, we explicitly formulate a general Multi Period Information Retrieval...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Sloan, Marc, Wang, Jun
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 21.03.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Many Information Retrieval (IR) models make use of offline statistical techniques to score documents for ranking over a single period, rather than use an online, dynamic system that is responsive to users over time. In this paper, we explicitly formulate a general Multi Period Information Retrieval problem, where we consider retrieval as a stochastic yet controllable process. The ranking action during the process continuously controls the retrieval system's dynamics, and an optimal ranking policy is found in order to maximise the overall users' satisfaction over the multiple periods as much as possible. Our derivations show interesting properties about how the posterior probability of the documents relevancy evolves from users feedbacks through clicks, and provides a plug-in framework for incorporating different click models. Based on the Multi-Armed Bandit theory, we propose a simple implementation of our framework using a dynamic ranking rule that takes rank bias and exploration of documents into account. We use TREC data to learn a suitable exploration parameter for our model, and then analyse its performance and a number of variants using a search log data set; the experiments suggest an ability to explore document relevance dynamically over time using user feedback in a way that can handle rank bias.
AbstractList Many Information Retrieval (IR) models make use of offline statistical techniques to score documents for ranking over a single period, rather than use an online, dynamic system that is responsive to users over time. In this paper, we explicitly formulate a general Multi Period Information Retrieval problem, where we consider retrieval as a stochastic yet controllable process. The ranking action during the process continuously controls the retrieval system's dynamics, and an optimal ranking policy is found in order to maximise the overall users' satisfaction over the multiple periods as much as possible. Our derivations show interesting properties about how the posterior probability of the documents relevancy evolves from users feedbacks through clicks, and provides a plug-in framework for incorporating different click models. Based on the Multi-Armed Bandit theory, we propose a simple implementation of our framework using a dynamic ranking rule that takes rank bias and exploration of documents into account. We use TREC data to learn a suitable exploration parameter for our model, and then analyse its performance and a number of variants using a search log data set; the experiments suggest an ability to explore document relevance dynamically over time using user feedback in a way that can handle rank bias.
Author Sloan, Marc
Wang, Jun
Author_xml – sequence: 1
  givenname: Marc
  surname: Sloan
  fullname: Sloan, Marc
– sequence: 2
  givenname: Jun
  surname: Wang
  fullname: Wang, Jun
BookMark eNrjYmDJy89LZWLgNDI2NtS1MDEy4mDgLS7OMjAwMDIzNzI1NeZksPEsSS1KLMksS1VwrShITS4BsvPzFNLyixR8S3NKMhUCUosy81MUPPOAQrkQyaDUkqLM1LLEHB4G1rTEnOJUXijNzaDs5hri7KFbUJRfWJpaXBKflV9alAeUijcysDA1BFpqaWFMnCoArCc5uQ
ContentType Paper
Copyright 2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_20851672983
IEDL.DBID BENPR
IngestDate Thu Oct 10 16:15:02 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_20851672983
OpenAccessLink https://www.proquest.com/docview/2085167298?pq-origsite=%requestingapplication%
PQID 2085167298
PQPubID 2050157
ParticipantIDs proquest_journals_2085167298
PublicationCentury 2000
PublicationDate 20130321
PublicationDateYYYYMMDD 2013-03-21
PublicationDate_xml – month: 03
  year: 2013
  text: 20130321
  day: 21
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2013
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 2.8808897
SecondaryResourceType preprint
Snippet Many Information Retrieval (IR) models make use of offline statistical techniques to score documents for ranking over a single period, rather than use an...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Bias
Conditional probability
Exploration
Information retrieval
Iterative methods
On-line systems
Ranking
Stability
Statistical analysis
User satisfaction
Title Iterative Expectation for Multi Period Information Retrieval
URI https://www.proquest.com/docview/2085167298
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFH-4FsHb_ELdLAG9Bpc07VIYDJTWKWyUobDbyNL06ObaXf3bfYmZgoedQghJSHjfyXs_gPshU3WWaU4HmRRUSKEo-lmarioWq2qITWKzkaezdPIuXhfJwgfcGv-tci8TnaCu1trGyB8sliRL0RSU480ntahR9nXVQ2h0IOToKQwCCB_zWTn_jbJwnJFY4ON_gtZpj6ILYak2ZnsKR-bjDI7dp0vdnMPoxZU0RnlDbMVh_fMqTtCMJC4vlpRIHuuK-JQhNzh3CFhIHhdwV-RvTxO633LpyaJZ_h0ivoQA_XtzBaRObRUg5DsTo7OmuESjRCjkPM1qqTNzDf1DK90cHu7BCXcIDjHlrA9Bu92ZW9Sj7SqCjiyeI39l2Jt-5d_czH0g
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60RfTmEx9VA3oNmsdusyB4ENettqVIhd6WNJs92sfW_-9kTBU89JTDhISEyTwz8wHcdoWts8xJfp8ZzbXRlqOf5fi0EspWXRySUI08GKbFh36dJJMYcGvit8q1TCRBXc1ciJHfBSxJkaIpaB7nCx5Qo0J2NUJobENbK9TVoVI8f_mNsUicnwTY439ilnRHvg_tkZ375QFs-c9D2KEvl645goceNTRGacNCv2H3kxNnaEQyqoplI2SOWcViwRAR3wn_CpnjGG7y5_FTwddblpEpmvLvCOoEWujd-1NgdRp6AOGr8wpdNSsNmiTa4rtzojYu82fQ2bTS-WbyNewW40G_7PeGbxewJwnLQXEpOtBaLb_8JWrU1fSKru0b3hR8lA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iterative+Expectation+for+Multi+Period+Information+Retrieval&rft.jtitle=arXiv.org&rft.au=Sloan%2C+Marc&rft.au=Wang%2C+Jun&rft.date=2013-03-21&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422