Approximate Bayesian algorithms for multiple target tracking with binary sensors
In this paper, we propose an approximate Bayesian computation approach to perform a multiple target tracking within a binary sensor network. The nature of the binary sensors (getting closer - moving away information) do not allow the use of the classical tools (e.g. Kalman Filter, Particle Filer), b...
Saved in:
Published in | arXiv.org |
---|---|
Main Author | |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
16.10.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we propose an approximate Bayesian computation approach to perform a multiple target tracking within a binary sensor network. The nature of the binary sensors (getting closer - moving away information) do not allow the use of the classical tools (e.g. Kalman Filter, Particle Filer), because the exact likelihood is intractable. To overcome this, we use the particular feature of the likelihood-free algorithms to produce an efficient multiple target tracking methodology. |
---|---|
AbstractList | In this paper, we propose an approximate Bayesian computation approach to perform a multiple target tracking within a binary sensor network. The nature of the binary sensors (getting closer - moving away information) do not allow the use of the classical tools (e.g. Kalman Filter, Particle Filer), because the exact likelihood is intractable. To overcome this, we use the particular feature of the likelihood-free algorithms to produce an efficient multiple target tracking methodology. |
Author | Ickowicz, Adrien |
Author_xml | – sequence: 1 givenname: Adrien surname: Ickowicz fullname: Ickowicz, Adrien |
BookMark | eNqNjbEOgjAUABujiaj8w0ucSaAFxFGNxtHBnTxNwWJpsa9E-XsZ_ACnG-6SW7CpsUZOWMCFSKIi5XzOQqImjmOeb3iWiYBddl3n7Ee16CXscZCk0ADq2jrlHy1BZR20vfaq0xI8ulp68A7vT2VqeI8N3JRBNwBJQ9bRis0q1CTDH5dsfTpeD-do3Lx6Sb5sbO_MqEoeF2mWJ3ybiP-qL1oWQco |
ContentType | Paper |
Copyright | 2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
ID | FETCH-proquest_journals_20845612913 |
IEDL.DBID | BENPR |
IngestDate | Thu Oct 10 16:00:33 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-proquest_journals_20845612913 |
OpenAccessLink | https://www.proquest.com/docview/2084561291?pq-origsite=%requestingapplication% |
PQID | 2084561291 |
PQPubID | 2050157 |
ParticipantIDs | proquest_journals_2084561291 |
PublicationCentury | 2000 |
PublicationDate | 20141016 |
PublicationDateYYYYMMDD | 2014-10-16 |
PublicationDate_xml | – month: 10 year: 2014 text: 20141016 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2014 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 2.952004 |
SecondaryResourceType | preprint |
Snippet | In this paper, we propose an approximate Bayesian computation approach to perform a multiple target tracking within a binary sensor network. The nature of the... |
SourceID | proquest |
SourceType | Aggregation Database |
SubjectTerms | Algorithms Bayesian analysis Kalman filters Multiple target tracking Position tracking Sensors |
Title | Approximate Bayesian algorithms for multiple target tracking with binary sensors |
URI | https://www.proquest.com/docview/2084561291 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwGP1wLYI3f-KPOQJ6DbRp2rUn2aR1CI4iCruNpElVULc1FfTi374vtdWDsGMIpGlJ3_ve60sDcOnpIeo1X1CdeIrygnMaqzCkviwl12FiKd6mLabR5JHfzsJZa7iZNlbZYWID1GpRWI8cRXpsuZ4l_tVyRe2pUfbranuERg9chkrBc8Adp9P8_tdlYdEQa-bgH9A27JHtgpuLpa72YEu_78N2E7oszAHkI_tD788XLBo1GYsvbTc0EvH6hNetn98MwYKSdIk_8pPZJnUlCmtvE-ugEtlspyUGxeiiModwkaUP1xPaTWPeLhUz_7ux4Agc1Pz6GEjAVCBK1BoC5VIs8K1iflTGKipYKJlUJ9DfNNLp5u4z2EHe5xaC_agPTl196HPk1loOoBdnN4P2MWLr7jtdAyf9hYo |
link.rule.ids | 783,787,12777,21400,33385,33756,43612,43817 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90RfTNT_yYGtDXwJqmXfskTjaqzlJkwt5K0mYqqJtNBf3vvautPgh7DuSL5O5-v_wuB3DeM33Ea67iJuoVXOZS8rDwfe7qmZbGj8jFk9oiCeIHeTP1pw3hZhtZZWsTa0NdzHPiyBGkh-TrReReLN45VY2i19WmhMYqOPRVFYIvZzBM0vtflkUEfYyZvX-GtvYeo01wUrUw5RasmLdtWKtFl7ndgfSSPvT-fMag0bCB-jKU0MjUyyOOWz29WoYBJWsVf-xHs82qUuVEbzNiUJmu02mZRTA6L-0unI2Gk6uYt9PImqNis7-FeXvQQcxv9oF5ovDUDLGGQrgUKrxVwg1mYRHkwtdCFwfQXdbT4fLmU1iPJ3fjbHyd3B7BBsYAksyxG3ShU5Uf5hj9bKVPms38BlSvhm0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximate+Bayesian+algorithms+for+multiple+target+tracking+with+binary+sensors&rft.jtitle=arXiv.org&rft.au=Ickowicz%2C+Adrien&rft.date=2014-10-16&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422 |