Approximate Bayesian algorithms for multiple target tracking with binary sensors

In this paper, we propose an approximate Bayesian computation approach to perform a multiple target tracking within a binary sensor network. The nature of the binary sensors (getting closer - moving away information) do not allow the use of the classical tools (e.g. Kalman Filter, Particle Filer), b...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Author Ickowicz, Adrien
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 16.10.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we propose an approximate Bayesian computation approach to perform a multiple target tracking within a binary sensor network. The nature of the binary sensors (getting closer - moving away information) do not allow the use of the classical tools (e.g. Kalman Filter, Particle Filer), because the exact likelihood is intractable. To overcome this, we use the particular feature of the likelihood-free algorithms to produce an efficient multiple target tracking methodology.
AbstractList In this paper, we propose an approximate Bayesian computation approach to perform a multiple target tracking within a binary sensor network. The nature of the binary sensors (getting closer - moving away information) do not allow the use of the classical tools (e.g. Kalman Filter, Particle Filer), because the exact likelihood is intractable. To overcome this, we use the particular feature of the likelihood-free algorithms to produce an efficient multiple target tracking methodology.
Author Ickowicz, Adrien
Author_xml – sequence: 1
  givenname: Adrien
  surname: Ickowicz
  fullname: Ickowicz, Adrien
BookMark eNqNjbEOgjAUABujiaj8w0ucSaAFxFGNxtHBnTxNwWJpsa9E-XsZ_ACnG-6SW7CpsUZOWMCFSKIi5XzOQqImjmOeb3iWiYBddl3n7Ee16CXscZCk0ADq2jrlHy1BZR20vfaq0xI8ulp68A7vT2VqeI8N3JRBNwBJQ9bRis0q1CTDH5dsfTpeD-do3Lx6Sb5sbO_MqEoeF2mWJ3ybiP-qL1oWQco
ContentType Paper
Copyright 2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_20845612913
IEDL.DBID BENPR
IngestDate Thu Oct 10 16:00:33 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_20845612913
OpenAccessLink https://www.proquest.com/docview/2084561291?pq-origsite=%requestingapplication%
PQID 2084561291
PQPubID 2050157
ParticipantIDs proquest_journals_2084561291
PublicationCentury 2000
PublicationDate 20141016
PublicationDateYYYYMMDD 2014-10-16
PublicationDate_xml – month: 10
  year: 2014
  text: 20141016
  day: 16
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2014
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 2.952004
SecondaryResourceType preprint
Snippet In this paper, we propose an approximate Bayesian computation approach to perform a multiple target tracking within a binary sensor network. The nature of the...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Bayesian analysis
Kalman filters
Multiple target tracking
Position tracking
Sensors
Title Approximate Bayesian algorithms for multiple target tracking with binary sensors
URI https://www.proquest.com/docview/2084561291
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwGP1wLYI3f-KPOQJ6DbRp2rUn2aR1CI4iCruNpElVULc1FfTi374vtdWDsGMIpGlJ3_ve60sDcOnpIeo1X1CdeIrygnMaqzCkviwl12FiKd6mLabR5JHfzsJZa7iZNlbZYWID1GpRWI8cRXpsuZ4l_tVyRe2pUfbranuERg9chkrBc8Adp9P8_tdlYdEQa-bgH9A27JHtgpuLpa72YEu_78N2E7oszAHkI_tD788XLBo1GYsvbTc0EvH6hNetn98MwYKSdIk_8pPZJnUlCmtvE-ugEtlspyUGxeiiModwkaUP1xPaTWPeLhUz_7ux4Agc1Pz6GEjAVCBK1BoC5VIs8K1iflTGKipYKJlUJ9DfNNLp5u4z2EHe5xaC_agPTl196HPk1loOoBdnN4P2MWLr7jtdAyf9hYo
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90RfTNT_yYGtDXwJqmXfskTjaqzlJkwt5K0mYqqJtNBf3vvautPgh7DuSL5O5-v_wuB3DeM33Ea67iJuoVXOZS8rDwfe7qmZbGj8jFk9oiCeIHeTP1pw3hZhtZZWsTa0NdzHPiyBGkh-TrReReLN45VY2i19WmhMYqOPRVFYIvZzBM0vtflkUEfYyZvX-GtvYeo01wUrUw5RasmLdtWKtFl7ndgfSSPvT-fMag0bCB-jKU0MjUyyOOWz29WoYBJWsVf-xHs82qUuVEbzNiUJmu02mZRTA6L-0unI2Gk6uYt9PImqNis7-FeXvQQcxv9oF5ovDUDLGGQrgUKrxVwg1mYRHkwtdCFwfQXdbT4fLmU1iPJ3fjbHyd3B7BBsYAksyxG3ShU5Uf5hj9bKVPms38BlSvhm0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximate+Bayesian+algorithms+for+multiple+target+tracking+with+binary+sensors&rft.jtitle=arXiv.org&rft.au=Ickowicz%2C+Adrien&rft.date=2014-10-16&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422