KPCA Spatio-temporal trajectory point cloud classifier for recognizing human actions in a CBVR system

We describe a content based video retrieval (CBVR) software system for identifying specific locations of a human action within a full length film, and retrieving similar video shots from a query. For this, we introduce the concept of a trajectory point cloud for classifying unique actions, encoded i...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Gómez-Conde, Iván, Olivieri, David N
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 26.03.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We describe a content based video retrieval (CBVR) software system for identifying specific locations of a human action within a full length film, and retrieving similar video shots from a query. For this, we introduce the concept of a trajectory point cloud for classifying unique actions, encoded in a spatio-temporal covariant eigenspace, where each point is characterized by its spatial location, local Frenet-Serret vector basis, time averaged curvature and torsion and the mean osculating hyperplane. Since each action can be distinguished by their unique trajectories within this space, the trajectory point cloud is used to define an adaptive distance metric for classifying queries against stored actions. Depending upon the distance to other trajectories, the distance metric uses either large scale structure of the trajectory point cloud, such as the mean distance between cloud centroids or the difference in hyperplane orientation, or small structure such as the time averaged curvature and torsion, to classify individual points in a fuzzy-KNN. Our system can function in real-time and has an accuracy greater than 93% for multiple action recognition within video repositories. We demonstrate the use of our CBVR system in two situations: by locating specific frame positions of trained actions in two full featured films, and video shot retrieval from a database with a web search application.
AbstractList We describe a content based video retrieval (CBVR) software system for identifying specific locations of a human action within a full length film, and retrieving similar video shots from a query. For this, we introduce the concept of a trajectory point cloud for classifying unique actions, encoded in a spatio-temporal covariant eigenspace, where each point is characterized by its spatial location, local Frenet-Serret vector basis, time averaged curvature and torsion and the mean osculating hyperplane. Since each action can be distinguished by their unique trajectories within this space, the trajectory point cloud is used to define an adaptive distance metric for classifying queries against stored actions. Depending upon the distance to other trajectories, the distance metric uses either large scale structure of the trajectory point cloud, such as the mean distance between cloud centroids or the difference in hyperplane orientation, or small structure such as the time averaged curvature and torsion, to classify individual points in a fuzzy-KNN. Our system can function in real-time and has an accuracy greater than 93% for multiple action recognition within video repositories. We demonstrate the use of our CBVR system in two situations: by locating specific frame positions of trained actions in two full featured films, and video shot retrieval from a database with a web search application.
Author Gómez-Conde, Iván
Olivieri, David N
Author_xml – sequence: 1
  givenname: Iván
  surname: Gómez-Conde
  fullname: Gómez-Conde, Iván
– sequence: 2
  givenname: David
  surname: Olivieri
  middlename: N
  fullname: Olivieri, David N
BookMark eNqNjMsKwjAURIMoWB__cMF1IU1adatFEdyIitsSaqopNbfmpov69WbhB7iZGTjDmbChRasHLBJSJvE6FWLM5kQ151wsVyLLZMT08ZRv4NIqbzD2-tWiUw14p2pdenQ9tGish7LB7h5SEZnKaAcVOnC6xIc1H2Mf8OxeyoIqg8YSmDAh397OQD0F64yNKtWQnv96yhb73TU_xK3Dd6fJFzV2zgZUCL5OkywVPJH_vb7wYUhF
ContentType Paper
Copyright 2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_20841542013
IEDL.DBID 8FG
IngestDate Thu Oct 10 18:13:54 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_20841542013
OpenAccessLink https://www.proquest.com/docview/2084154201?pq-origsite=%requestingapplication%
PQID 2084154201
PQPubID 2050157
ParticipantIDs proquest_journals_2084154201
PublicationCentury 2000
PublicationDate 20140326
PublicationDateYYYYMMDD 2014-03-26
PublicationDate_xml – month: 03
  year: 2014
  text: 20140326
  day: 26
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2014
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 2.92621
SecondaryResourceType preprint
Snippet We describe a content based video retrieval (CBVR) software system for identifying specific locations of a human action within a full length film, and...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Centroids
Classification
Coding
Curvature
Fuzzy systems
Hyperplanes
Motion pictures
Repositories
Retrieval
Torsion
Trajectories
Title KPCA Spatio-temporal trajectory point cloud classifier for recognizing human actions in a CBVR system
URI https://www.proquest.com/docview/2084154201
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFH_oiuDNT_yYI6DXwEy7pj2JK6tD2Sjzg91G2qZQGW1tu4Me_Nt9yTI9CLuEhEDIF-_33ssv7wHcsH7WtzkTeAJ2StHeyKgnnYQiNKeuLxBj9Q-5ydQdvzqP88HcONwaQ6vcyEQtqNMyUT5yNNI9xBoH8equ-qAqa5R6XTUpNHbBumWcK0qXFz78-liYy1Fjtv-JWY0d4QFYkahkfQg7sjiCPU25TJpjkE9RcE-eNaOZmghRS9LW4l070j9JVeZFS5JluUqxRCU3zxDDCGqZxNB-vhB3iM6yR9b_ExqSY5UEw7cZWcdoPoHrcPQSjOlmbgtze5rF31rtU-gUZSHPgGRxNhAq9g0acWhTSR81Dylt4foO537MzqG7baSL7d2XsI-lo9hVzO1Cp61X8grhto17ek97YA1H02iGrcn36AcbKYpT
link.rule.ids 783,787,12778,21401,33386,33757,43613,43818
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED-0RfTNT_yYGtDXwGi7fjyJKxvVbaXMKXsraZvCxmhr2z3oX-8ly_RB2EsICYR8cb-7yy93AI9GN--ajsHwBMyMor2RU5dbKUVozmyPIcbKH3KT0A7erdd5b64cbo2iVW5lohTUWZkKHzka6S5ijYV49VR9UpE1SryuqhQa-6CLUFWuBnp_EEbTXy-LYTuoM5v_BK1Ej-Ex6BGreH0Ce7w4hQNJukybM-CjyH8mb5LTTFWMqBVpa7aUrvQvUpWLoiXpqlxnWKKau8gRxQjqmUQRf74ReYjMs0c2PxQassAq8fsfU7KJ0nwOD8PBzA_odm6xuj9N_Lda8wK0oiz4JZA8yXtMRL9BMw6tKu6h7sG5yWzPchwvMa6gs2uk693d93AYzCbjePwSjm7gCFsswbUy7A5obb3mtwi-bXKndvgHcwiL2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=KPCA+Spatio-temporal+trajectory+point+cloud+classifier+for+recognizing+human+actions+in+a+CBVR+system&rft.jtitle=arXiv.org&rft.au=G%C3%B3mez-Conde%2C+Iv%C3%A1n&rft.au=Olivieri%2C+David+N&rft.date=2014-03-26&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422