Black Box White Arrow

The present paper proposes a new and systematic approach to the so-called black box group methods in computational group theory. Instead of a single black box, we consider categories of black boxes and their morphisms. This makes new classes of black box problems accessible. For example, we can enri...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Borovik, Alexandre, \c{S}ükrü Yalçinkaya
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 05.05.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The present paper proposes a new and systematic approach to the so-called black box group methods in computational group theory. Instead of a single black box, we consider categories of black boxes and their morphisms. This makes new classes of black box problems accessible. For example, we can enrich black box groups by actions of outer automorphisms. As an example of application of this technique, we construct Frobenius maps on black box groups of untwisted Lie type in odd characteristic (Section 6) and inverse-transpose automorphisms on black box groups encrypting \({\rm (P)SL}_n(\mathbb{F}_q)\). One of the advantages of our approach is that it allows us to work in black box groups over finite fields of big characteristic. Another advantage is explanatory power of our methods; as an example, we explain Kantor's and Kassabov's construction of an involution in black box groups encrypting \({\rm SL}_2(2^n)\). Due to the nature of our work we also have to discuss a few methodological issues of the black box group theory. The paper is further development of our text "Fifty shades of black" [arXiv:1308.2487], and repeats parts of it, but under a weaker axioms for black box groups.
AbstractList The present paper proposes a new and systematic approach to the so-called black box group methods in computational group theory. Instead of a single black box, we consider categories of black boxes and their morphisms. This makes new classes of black box problems accessible. For example, we can enrich black box groups by actions of outer automorphisms. As an example of application of this technique, we construct Frobenius maps on black box groups of untwisted Lie type in odd characteristic (Section 6) and inverse-transpose automorphisms on black box groups encrypting \({\rm (P)SL}_n(\mathbb{F}_q)\). One of the advantages of our approach is that it allows us to work in black box groups over finite fields of big characteristic. Another advantage is explanatory power of our methods; as an example, we explain Kantor's and Kassabov's construction of an involution in black box groups encrypting \({\rm SL}_2(2^n)\). Due to the nature of our work we also have to discuss a few methodological issues of the black box group theory. The paper is further development of our text "Fifty shades of black" [arXiv:1308.2487], and repeats parts of it, but under a weaker axioms for black box groups.
Author c{S}ükrü Yalçinkaya
Borovik, Alexandre
Author_xml – sequence: 1
  givenname: Alexandre
  surname: Borovik
  fullname: Borovik, Alexandre
– sequence: 2
  fullname: \c{S}ükrü Yalçinkaya
BookMark eNrjYmDJy89LZWLgNDI2NtS1MDEy4mDgLS7OMjAwMDIzNzI1NeZkEHXKSUzOVnDKr1AIz8gsSVVwLCrKL-dhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwsTA0NDSyNzY-JUAQCN6SoO
ContentType Paper
Copyright 2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_20840119273
IEDL.DBID BENPR
IngestDate Thu Oct 10 17:31:04 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_20840119273
OpenAccessLink https://www.proquest.com/docview/2084011927?pq-origsite=%requestingapplication%
PQID 2084011927
PQPubID 2050157
ParticipantIDs proquest_journals_2084011927
PublicationCentury 2000
PublicationDate 20140505
PublicationDateYYYYMMDD 2014-05-05
PublicationDate_xml – month: 05
  year: 2014
  text: 20140505
  day: 05
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2014
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 2.931259
SecondaryResourceType preprint
Snippet The present paper proposes a new and systematic approach to the so-called black box group methods in computational group theory. Instead of a single black box,...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Automorphisms
Automotive parts
Axioms
Black boxes
Fields (mathematics)
Group theory
Shades
Title Black Box White Arrow
URI https://www.proquest.com/docview/2084011927
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQSTQ0SDNJMzPTTUqyNNMF1tcWuhbAdoBuUgqQmWaZmmYAPoHP18_MI9TEK8I0AjrgVgxdVgkrE8EFdUp-MmiMHNhJB3ZFDIHtEXP7gkJd0K1RoNlV6BUazAysRsCeggELA6uTq19AEHyUxcjMHNhmNsYoaMG1h5sgA2tAYkFqkRADU2qeMAM7eNFlcrEIgyh49EzBKb9CAXxPnYIj6EBEUQZlN9cQZw9dmFnx0Pgujke4zliMgQXYcU-VYFCwSLVINU0yTwF2AlNNTJLTLNMMzQxSgF2C1NREyxSDJEkGGXwmSeGXlmbgAlbeJuDFd6YyDCwlRaWpssAKsiRJjoHZws1dDhoWQJ5vnSsAFXRuIQ
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQSTQ0SDNJMzPTTUqyNNMF1tcWuhbAdoBuUgqQmWaZmmYAPoHP18_MI9TEK8I0AjrgVgxdVgkrE8EFdUp-MmiMHNhJB3ZFDIHtEXP7gkJd0K1RoNlV6BUazAysJsbAuhq0U9zNHT7GYmRmDmwxG2MUs-C6w02QgTUgsSC1SIiBKTVPmIEdvOQyuViEQRQ8dqbglF-hAL6lTsERdByiKIOym2uIs4cuzKx4aGwXxyPcZizGwALstqdKMChYpFqkmiaZpwC7gKkmJslplmmGZgYpwA5BamqiZYpBkiSDDD6TpPBLyzNweoT4-sT7ePp5SzNwAatxE_AyPFMZBpaSotJUWWBVWZIkBw4PAE9jbZU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Black+Box+White+Arrow&rft.jtitle=arXiv.org&rft.au=Borovik%2C+Alexandre&rft.au=%5Cc%7BS%7D%C3%BCkr%C3%BC+Yal%C3%A7inkaya&rft.date=2014-05-05&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422