Elementary matrix reduction over locally stable rings
A commutative ring R is locally stable provided that for any \(a,b\in R\) such that \(aR+bR=R\), there exist some \(y\in R\) such that \(R/(a+by)R\) has stable range 1.For a Bezout ring \(R\), we prove that \(R\) is an elementary divisor ring if and only if \(R\) is locally stable if and only if \(R...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
24.06.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A commutative ring R is locally stable provided that for any \(a,b\in R\) such that \(aR+bR=R\), there exist some \(y\in R\) such that \(R/(a+by)R\) has stable range 1.For a Bezout ring \(R\), we prove that \(R\) is an elementary divisor ring if and only if \(R\) is locally stable if and only if \(R\) has neat range 1. |
---|---|
AbstractList | A commutative ring R is locally stable provided that for any \(a,b\in R\) such that \(aR+bR=R\), there exist some \(y\in R\) such that \(R/(a+by)R\) has stable range 1.For a Bezout ring \(R\), we prove that \(R\) is an elementary divisor ring if and only if \(R\) is locally stable if and only if \(R\) has neat range 1. |
Author | Marjan Sheibani Abdolyousefi Chen, Huanyin Rahman Bahmani Sangesari |
Author_xml | – sequence: 1 fullname: Marjan Sheibani Abdolyousefi – sequence: 2 fullname: Rahman Bahmani Sangesari – sequence: 3 givenname: Huanyin surname: Chen fullname: Chen, Huanyin |
BookMark | eNqNykEKwjAQQNEgClbtHQKuC3FiavdS8QDuS2xHSUkTnUnF3l4XHsDVX7y_EvMQA85EBlrvimoPsBQ5c6-UgvIAxuhMmNrjgCFZmuRgE7m3JOzGNrkYZHwhSR9b6_0kOdmrR0ku3HkjFjfrGfNf12J7qi_Hc_Gg-ByRU9PHkcKXGlCVBqNLBfq_6wMQtjc4 |
ContentType | Paper |
Copyright | 2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Engineering Collection ProQuest Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
ID | FETCH-proquest_journals_20832536023 |
IEDL.DBID | BENPR |
IngestDate | Thu Oct 10 19:34:44 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-proquest_journals_20832536023 |
OpenAccessLink | https://www.proquest.com/docview/2083253602?pq-origsite=%requestingapplication% |
PQID | 2083253602 |
PQPubID | 2050157 |
ParticipantIDs | proquest_journals_2083253602 |
PublicationCentury | 2000 |
PublicationDate | 20150624 |
PublicationDateYYYYMMDD | 2015-06-24 |
PublicationDate_xml | – month: 06 year: 2015 text: 20150624 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2015 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 2.9876776 |
SecondaryResourceType | preprint |
Snippet | A commutative ring R is locally stable provided that for any \(a,b\in R\) such that \(aR+bR=R\), there exist some \(y\in R\) such that \(R/(a+by)R\) has stable... |
SourceID | proquest |
SourceType | Aggregation Database |
SubjectTerms | Matrix reduction Rings (mathematics) |
Title | Elementary matrix reduction over locally stable rings |
URI | https://www.proquest.com/docview/2083253602 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB7sLoI3n_ioJaDXwJrNJvEkKLsWoaWIQm9l8zpVrbsV2ou_3cmS6kHoMQSSMEzmm5l8mQG4Rkz3NeI8Bjmiptw6QbX1kt5qg1fLo0frw3_n0VgMX_nTtJjGhFsbaZUbm9gZavthQo4cg3TUvSIXGbtbfNLQNSq8rsYWGj1IGUYKWQLpfTmePP9mWZiQ6DPn_wxthx7VPqSTeuGaA9hx74ew25EuTXsERRm5282avIVS-SvShEqqQVYkUCtJhzTzNUEXTs8dCTm49hiuqvLlYUg3e82iPrSzv9PnJ5BgYO9OgVhnlHeGoQvGuJG15tIqodxN5qWutTqD_raVzrdPX8AegnsRaE2M9yFZNl_uEgF0qQfQU9XjIMoKR6Pv8gfzjnwD |
link.rule.ids | 783,787,12777,21400,33385,33756,43612,43817 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwED50RdybP9E5NaCvhdmmSX0SlI6qWxkyYW-l-fU0dbYT3H_vXcn0QdhzIAlHct99ly93ANeI6a5CnEeSI6qQGytCZZwMb5XGq-UwonX033lciPyVP82SmU-4NV5WufaJraM2H5py5EjS8ewlsRhEd4vPkLpG0euqb6GxDQGVqkLyFdxnxeTlN8sSCYkxc_zP0bboMdyDYFItbL0PW_b9AHZa0aVuDiHJvHa7XrE3KpX_zWqqpEq2YiStZC3SzFcMQzg1t4xycM0RXA2z6UMertcq_Xloyr_dx8fQQWJvT4AZq1NndYQhWMS1rBSXJhWpvRk4qSqVnkJ_00y9zcOXsJtPx6Ny9Fg8n0EXgT4hiVPE-9BZ1l_2HMF0qS68xX4AHmN85g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elementary+matrix+reduction+over+locally+stable+rings&rft.jtitle=arXiv.org&rft.au=Marjan+Sheibani+Abdolyousefi&rft.au=Rahman+Bahmani+Sangesari&rft.au=Chen%2C+Huanyin&rft.date=2015-06-24&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422 |