Elementary matrix reduction over locally stable rings

A commutative ring R is locally stable provided that for any \(a,b\in R\) such that \(aR+bR=R\), there exist some \(y\in R\) such that \(R/(a+by)R\) has stable range 1.For a Bezout ring \(R\), we prove that \(R\) is an elementary divisor ring if and only if \(R\) is locally stable if and only if \(R...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Marjan Sheibani Abdolyousefi, Rahman Bahmani Sangesari, Chen, Huanyin
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 24.06.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A commutative ring R is locally stable provided that for any \(a,b\in R\) such that \(aR+bR=R\), there exist some \(y\in R\) such that \(R/(a+by)R\) has stable range 1.For a Bezout ring \(R\), we prove that \(R\) is an elementary divisor ring if and only if \(R\) is locally stable if and only if \(R\) has neat range 1.
AbstractList A commutative ring R is locally stable provided that for any \(a,b\in R\) such that \(aR+bR=R\), there exist some \(y\in R\) such that \(R/(a+by)R\) has stable range 1.For a Bezout ring \(R\), we prove that \(R\) is an elementary divisor ring if and only if \(R\) is locally stable if and only if \(R\) has neat range 1.
Author Marjan Sheibani Abdolyousefi
Chen, Huanyin
Rahman Bahmani Sangesari
Author_xml – sequence: 1
  fullname: Marjan Sheibani Abdolyousefi
– sequence: 2
  fullname: Rahman Bahmani Sangesari
– sequence: 3
  givenname: Huanyin
  surname: Chen
  fullname: Chen, Huanyin
BookMark eNqNykEKwjAQQNEgClbtHQKuC3FiavdS8QDuS2xHSUkTnUnF3l4XHsDVX7y_EvMQA85EBlrvimoPsBQ5c6-UgvIAxuhMmNrjgCFZmuRgE7m3JOzGNrkYZHwhSR9b6_0kOdmrR0ku3HkjFjfrGfNf12J7qi_Hc_Gg-ByRU9PHkcKXGlCVBqNLBfq_6wMQtjc4
ContentType Paper
Copyright 2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Engineering Collection
ProQuest Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_20832536023
IEDL.DBID BENPR
IngestDate Thu Oct 10 19:34:44 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_20832536023
OpenAccessLink https://www.proquest.com/docview/2083253602?pq-origsite=%requestingapplication%
PQID 2083253602
PQPubID 2050157
ParticipantIDs proquest_journals_2083253602
PublicationCentury 2000
PublicationDate 20150624
PublicationDateYYYYMMDD 2015-06-24
PublicationDate_xml – month: 06
  year: 2015
  text: 20150624
  day: 24
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2015
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 2.9876776
SecondaryResourceType preprint
Snippet A commutative ring R is locally stable provided that for any \(a,b\in R\) such that \(aR+bR=R\), there exist some \(y\in R\) such that \(R/(a+by)R\) has stable...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Matrix reduction
Rings (mathematics)
Title Elementary matrix reduction over locally stable rings
URI https://www.proquest.com/docview/2083253602
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB7sLoI3n_ioJaDXwJrNJvEkKLsWoaWIQm9l8zpVrbsV2ou_3cmS6kHoMQSSMEzmm5l8mQG4Rkz3NeI8Bjmiptw6QbX1kt5qg1fLo0frw3_n0VgMX_nTtJjGhFsbaZUbm9gZavthQo4cg3TUvSIXGbtbfNLQNSq8rsYWGj1IGUYKWQLpfTmePP9mWZiQ6DPn_wxthx7VPqSTeuGaA9hx74ew25EuTXsERRm5282avIVS-SvShEqqQVYkUCtJhzTzNUEXTs8dCTm49hiuqvLlYUg3e82iPrSzv9PnJ5BgYO9OgVhnlHeGoQvGuJG15tIqodxN5qWutTqD_raVzrdPX8AegnsRaE2M9yFZNl_uEgF0qQfQU9XjIMoKR6Pv8gfzjnwD
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwED50RdybP9E5NaCvhdmmSX0SlI6qWxkyYW-l-fU0dbYT3H_vXcn0QdhzIAlHct99ly93ANeI6a5CnEeSI6qQGytCZZwMb5XGq-UwonX033lciPyVP82SmU-4NV5WufaJraM2H5py5EjS8ewlsRhEd4vPkLpG0euqb6GxDQGVqkLyFdxnxeTlN8sSCYkxc_zP0bboMdyDYFItbL0PW_b9AHZa0aVuDiHJvHa7XrE3KpX_zWqqpEq2YiStZC3SzFcMQzg1t4xycM0RXA2z6UMertcq_Xloyr_dx8fQQWJvT4AZq1NndYQhWMS1rBSXJhWpvRk4qSqVnkJ_00y9zcOXsJtPx6Ny9Fg8n0EXgT4hiVPE-9BZ1l_2HMF0qS68xX4AHmN85g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elementary+matrix+reduction+over+locally+stable+rings&rft.jtitle=arXiv.org&rft.au=Marjan+Sheibani+Abdolyousefi&rft.au=Rahman+Bahmani+Sangesari&rft.au=Chen%2C+Huanyin&rft.date=2015-06-24&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422