NIST: An Image Classification Network to Image Semantic Retrieval
This paper proposes a classification network to image semantic retrieval (NIST) framework to counter the image retrieval challenge. Our approach leverages the successful classification network GoogleNet based on Convolutional Neural Networks to obtain the semantic feature matrix which contains the s...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
02.07.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper proposes a classification network to image semantic retrieval (NIST) framework to counter the image retrieval challenge. Our approach leverages the successful classification network GoogleNet based on Convolutional Neural Networks to obtain the semantic feature matrix which contains the serial number of classes and corresponding probabilities. Compared with traditional image retrieval using feature matching to compute the similarity between two images, NIST leverages the semantic information to construct semantic feature matrix and uses the semantic distance algorithm to compute the similarity. Besides, the fusion strategy can significantly reduce storage and time consumption due to less classes participating in the last semantic distance computation. Experiments demonstrate that our NIST framework produces state-of-the-art results in retrieval experiments on MIRFLICKR-25K dataset. |
---|---|
AbstractList | This paper proposes a classification network to image semantic retrieval (NIST) framework to counter the image retrieval challenge. Our approach leverages the successful classification network GoogleNet based on Convolutional Neural Networks to obtain the semantic feature matrix which contains the serial number of classes and corresponding probabilities. Compared with traditional image retrieval using feature matching to compute the similarity between two images, NIST leverages the semantic information to construct semantic feature matrix and uses the semantic distance algorithm to compute the similarity. Besides, the fusion strategy can significantly reduce storage and time consumption due to less classes participating in the last semantic distance computation. Experiments demonstrate that our NIST framework produces state-of-the-art results in retrieval experiments on MIRFLICKR-25K dataset. |
Author | Zhang, Qianni Le, Dong Chen, Xiuyuan Mao, Mengdie |
Author_xml | – sequence: 1 givenname: Dong surname: Le fullname: Le, Dong – sequence: 2 givenname: Xiuyuan surname: Chen fullname: Chen, Xiuyuan – sequence: 3 givenname: Mengdie surname: Mao fullname: Mao, Mengdie – sequence: 4 givenname: Qianni surname: Zhang fullname: Zhang, Qianni |
BookMark | eNqNyrEOgjAUQNHGaCIq_9DEmaS-gkU3QjSyOAg7acjDFKHVtujv68AHON3h3BWZa6NxRgLgfBelMcCShM51jDHYC0gSHpDsWpTVkWaaFoO8I8176ZxqVSO9Mppe0X-MfVBvJi9xkNqrht7QW4Vv2W_IopW9w3DqmmzPpyq_RE9rXiM6X3dmtPpHNTBxiCEVTPD_ri8mYzoo |
ContentType | Paper |
Copyright | 2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Engineering Collection Engineering Database ProQuest Publicly Available Content database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
ID | FETCH-proquest_journals_20794287073 |
IEDL.DBID | 8FG |
IngestDate | Thu Oct 10 16:18:08 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-proquest_journals_20794287073 |
OpenAccessLink | https://www.proquest.com/docview/2079428707?pq-origsite=%requestingapplication% |
PQID | 2079428707 |
PQPubID | 2050157 |
ParticipantIDs | proquest_journals_2079428707 |
PublicationCentury | 2000 |
PublicationDate | 20160702 |
PublicationDateYYYYMMDD | 2016-07-02 |
PublicationDate_xml | – month: 07 year: 2016 text: 20160702 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2016 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 3.0381994 |
SecondaryResourceType | preprint |
Snippet | This paper proposes a classification network to image semantic retrieval (NIST) framework to counter the image retrieval challenge. Our approach leverages the... |
SourceID | proquest |
SourceType | Aggregation Database |
SubjectTerms | Algorithms Artificial neural networks Image classification Image management Image retrieval Semantics Similarity |
Title | NIST: An Image Classification Network to Image Semantic Retrieval |
URI | https://www.proquest.com/docview/2079428707 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60i-DNJz5qCeg1YJNssuulVNm1FbqUtkJvZXcTwUOfu1797Z3EVA9Cj2EgIcPMfMnMBx_AAyIiV1xIqtqaUyE4p1GhQ_poYqFKxHjuVBQGmey9i7dpOPUNt8rTKnc10RVqvSxtj9x2QmI3lVOd1Zpa1Sg7XfUSGocQtJlSltIVpa-_PRYmFb6Y-b8y67AjPYFgmK_M5hQOzOIMjhzlsqzOoZv1x5Mn0l2Q_hyTmjh5Skvccb4i2Q8_m9RLbx-bOXrhsyQjJ4KFEXIB92kyeenR3bkzHxnV7O8e_BIa-MU3V0BCLXhURnmu8lAwIQvMw1h-6EIzdKEIr6G5b6eb_eZbOEaYl45kyprQqDdf5g6htC5azl8tCJ6TbDjC1eA72QJaxHwf |
link.rule.ids | 783,787,12778,21401,33386,33757,43613,43818 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB60RfTmEx-rBvQa0CZNWi-yyi6t7pZlt8LeSttE8LAPt_X_O4lZPQh7DiTMMDNfMvORD-AWEZFJxgWV94pRzhmjUaVCeqdjLmvEeGZVFIaZSN74yzScuoZb42iV65poC7Va1KZHbjohsZ3KycflJzWqUWa66iQ0tsE3X1VFHvhPvWw0_u2yBELinZn9K7QWPfr74I_KpV4dwJaeH8KOJV3WzRF0s3SSP5DunKQzTGtiBSoNdcd6i2Q_DG3SLtz6RM_QDx81GVsZLIyRY7jp9_LnhK7PLVxsNMWfJewEPHzk61MgoUID6qgsZRnygIsKMzEW76pSATqRh2fQ2bTT-ebla9hN8uGgGKTZ6wXsIegLSzkNOuC1qy99icDaVlfOe9-Yj32l |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NIST%3A+An+Image+Classification+Network+to+Image+Semantic+Retrieval&rft.jtitle=arXiv.org&rft.au=Le%2C+Dong&rft.au=Chen%2C+Xiuyuan&rft.au=Mao%2C+Mengdie&rft.au=Zhang%2C+Qianni&rft.date=2016-07-02&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422 |