NIST: An Image Classification Network to Image Semantic Retrieval

This paper proposes a classification network to image semantic retrieval (NIST) framework to counter the image retrieval challenge. Our approach leverages the successful classification network GoogleNet based on Convolutional Neural Networks to obtain the semantic feature matrix which contains the s...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Le, Dong, Chen, Xiuyuan, Mao, Mengdie, Zhang, Qianni
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 02.07.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper proposes a classification network to image semantic retrieval (NIST) framework to counter the image retrieval challenge. Our approach leverages the successful classification network GoogleNet based on Convolutional Neural Networks to obtain the semantic feature matrix which contains the serial number of classes and corresponding probabilities. Compared with traditional image retrieval using feature matching to compute the similarity between two images, NIST leverages the semantic information to construct semantic feature matrix and uses the semantic distance algorithm to compute the similarity. Besides, the fusion strategy can significantly reduce storage and time consumption due to less classes participating in the last semantic distance computation. Experiments demonstrate that our NIST framework produces state-of-the-art results in retrieval experiments on MIRFLICKR-25K dataset.
AbstractList This paper proposes a classification network to image semantic retrieval (NIST) framework to counter the image retrieval challenge. Our approach leverages the successful classification network GoogleNet based on Convolutional Neural Networks to obtain the semantic feature matrix which contains the serial number of classes and corresponding probabilities. Compared with traditional image retrieval using feature matching to compute the similarity between two images, NIST leverages the semantic information to construct semantic feature matrix and uses the semantic distance algorithm to compute the similarity. Besides, the fusion strategy can significantly reduce storage and time consumption due to less classes participating in the last semantic distance computation. Experiments demonstrate that our NIST framework produces state-of-the-art results in retrieval experiments on MIRFLICKR-25K dataset.
Author Zhang, Qianni
Le, Dong
Chen, Xiuyuan
Mao, Mengdie
Author_xml – sequence: 1
  givenname: Dong
  surname: Le
  fullname: Le, Dong
– sequence: 2
  givenname: Xiuyuan
  surname: Chen
  fullname: Chen, Xiuyuan
– sequence: 3
  givenname: Mengdie
  surname: Mao
  fullname: Mao, Mengdie
– sequence: 4
  givenname: Qianni
  surname: Zhang
  fullname: Zhang, Qianni
BookMark eNqNyrEOgjAUQNHGaCIq_9DEmaS-gkU3QjSyOAg7acjDFKHVtujv68AHON3h3BWZa6NxRgLgfBelMcCShM51jDHYC0gSHpDsWpTVkWaaFoO8I8176ZxqVSO9Mppe0X-MfVBvJi9xkNqrht7QW4Vv2W_IopW9w3DqmmzPpyq_RE9rXiM6X3dmtPpHNTBxiCEVTPD_ri8mYzoo
ContentType Paper
Copyright 2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Engineering Collection
Engineering Database
ProQuest Publicly Available Content database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_20794287073
IEDL.DBID 8FG
IngestDate Thu Oct 10 16:18:08 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_20794287073
OpenAccessLink https://www.proquest.com/docview/2079428707?pq-origsite=%requestingapplication%
PQID 2079428707
PQPubID 2050157
ParticipantIDs proquest_journals_2079428707
PublicationCentury 2000
PublicationDate 20160702
PublicationDateYYYYMMDD 2016-07-02
PublicationDate_xml – month: 07
  year: 2016
  text: 20160702
  day: 02
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2016
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.0381994
SecondaryResourceType preprint
Snippet This paper proposes a classification network to image semantic retrieval (NIST) framework to counter the image retrieval challenge. Our approach leverages the...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Artificial neural networks
Image classification
Image management
Image retrieval
Semantics
Similarity
Title NIST: An Image Classification Network to Image Semantic Retrieval
URI https://www.proquest.com/docview/2079428707
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60i-DNJz5qCeg1YJNssuulVNm1FbqUtkJvZXcTwUOfu1797Z3EVA9Cj2EgIcPMfMnMBx_AAyIiV1xIqtqaUyE4p1GhQ_poYqFKxHjuVBQGmey9i7dpOPUNt8rTKnc10RVqvSxtj9x2QmI3lVOd1Zpa1Sg7XfUSGocQtJlSltIVpa-_PRYmFb6Y-b8y67AjPYFgmK_M5hQOzOIMjhzlsqzOoZv1x5Mn0l2Q_hyTmjh5Skvccb4i2Q8_m9RLbx-bOXrhsyQjJ4KFEXIB92kyeenR3bkzHxnV7O8e_BIa-MU3V0BCLXhURnmu8lAwIQvMw1h-6EIzdKEIr6G5b6eb_eZbOEaYl45kyprQqDdf5g6htC5azl8tCJ6TbDjC1eA72QJaxHwf
link.rule.ids 783,787,12778,21401,33386,33757,43613,43818
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB60RfTmEx-rBvQa0CZNWi-yyi6t7pZlt8LeSttE8LAPt_X_O4lZPQh7DiTMMDNfMvORD-AWEZFJxgWV94pRzhmjUaVCeqdjLmvEeGZVFIaZSN74yzScuoZb42iV65poC7Va1KZHbjohsZ3KycflJzWqUWa66iQ0tsE3X1VFHvhPvWw0_u2yBELinZn9K7QWPfr74I_KpV4dwJaeH8KOJV3WzRF0s3SSP5DunKQzTGtiBSoNdcd6i2Q_DG3SLtz6RM_QDx81GVsZLIyRY7jp9_LnhK7PLVxsNMWfJewEPHzk61MgoUID6qgsZRnygIsKMzEW76pSATqRh2fQ2bTT-ebla9hN8uGgGKTZ6wXsIegLSzkNOuC1qy99icDaVlfOe9-Yj32l
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NIST%3A+An+Image+Classification+Network+to+Image+Semantic+Retrieval&rft.jtitle=arXiv.org&rft.au=Le%2C+Dong&rft.au=Chen%2C+Xiuyuan&rft.au=Mao%2C+Mengdie&rft.au=Zhang%2C+Qianni&rft.date=2016-07-02&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422