Shintani relation for base change: unitary and elliptic representations

Let \(E/F\) be a cyclic extension of \(p\)-adic fields and \(n\) a positive integer. Arthur and Clozel constructed a base change process \(\pi\mapsto \pi_E\) which associates to a smooth irreducible representation of \(GL_n(F)\) a smooth irreducible representation of \(GL_n(E)\), invariant under \(G...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Badulescu, A I, Henniart, G
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 23.05.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Let \(E/F\) be a cyclic extension of \(p\)-adic fields and \(n\) a positive integer. Arthur and Clozel constructed a base change process \(\pi\mapsto \pi_E\) which associates to a smooth irreducible representation of \(GL_n(F)\) a smooth irreducible representation of \(GL_n(E)\), invariant under \(Gal(E/F)\). When \(\pi\) is tempered, \(\pi_E\) is tempered and is characterized by an identity (the Shintani character relation) relating the character of \(\pi\) to the character of \(\pi_E\) twisted by the action of \(Gal(E/F)\). In this paper we show that the Shintani relation also holds when \(\pi\) is unitary or elliptic. We prove similar results for the extension \(C/R\). As a corollary we show that for a cyclic extension \(E/F\) of number fields the base change for automorphic residual representations of the adèle group \(GL_n(A_F)\) respects the Shintani relation at each place of \(F\).
AbstractList Let \(E/F\) be a cyclic extension of \(p\)-adic fields and \(n\) a positive integer. Arthur and Clozel constructed a base change process \(\pi\mapsto \pi_E\) which associates to a smooth irreducible representation of \(GL_n(F)\) a smooth irreducible representation of \(GL_n(E)\), invariant under \(Gal(E/F)\). When \(\pi\) is tempered, \(\pi_E\) is tempered and is characterized by an identity (the Shintani character relation) relating the character of \(\pi\) to the character of \(\pi_E\) twisted by the action of \(Gal(E/F)\). In this paper we show that the Shintani relation also holds when \(\pi\) is unitary or elliptic. We prove similar results for the extension \(C/R\). As a corollary we show that for a cyclic extension \(E/F\) of number fields the base change for automorphic residual representations of the adèle group \(GL_n(A_F)\) respects the Shintani relation at each place of \(F\).
Author Badulescu, A I
Henniart, G
Author_xml – sequence: 1
  givenname: A
  surname: Badulescu
  middlename: I
  fullname: Badulescu, A I
– sequence: 2
  givenname: G
  surname: Henniart
  fullname: Henniart, G
BookMark eNqNi0sOgjAUABujiajcoYlrktKCiFvjZ6978sCHlDSv2JaFtxcTD-BqFjOzYnOyhDMWSaXSZJ9JuWSx970QQu4KmecqYpdbpykAae7QQNCWeGsdr8EjbzqgJx74SDqAe3OgB0dj9BB0M-WDQ4_T-538hi1aMB7jH9dsez7dj9dkcPY1og9Vb0dHk6qkKMpUqTJL1X_VB5BrPfE
ContentType Paper
Copyright 2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_20791339413
IEDL.DBID 8FG
IngestDate Thu Oct 10 17:41:38 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_20791339413
OpenAccessLink https://www.proquest.com/docview/2079133941?pq-origsite=%requestingapplication%
PQID 2079133941
PQPubID 2050157
ParticipantIDs proquest_journals_2079133941
PublicationCentury 2000
PublicationDate 20160523
PublicationDateYYYYMMDD 2016-05-23
PublicationDate_xml – month: 05
  year: 2016
  text: 20160523
  day: 23
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2016
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.040795
SecondaryResourceType preprint
Snippet Let \(E/F\) be a cyclic extension of \(p\)-adic fields and \(n\) a positive integer. Arthur and Clozel constructed a base change process \(\pi\mapsto \pi_E\)...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Number theory
Representations
Title Shintani relation for base change: unitary and elliptic representations
URI https://www.proquest.com/docview/2079133941
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60i-DNJz5qCeg1sNnsK14EZbdFaCk-oLeySbPYy1p324MXf7szcVcPQo8hkJAwM9-8B-BGCWOFKjUvpbA8ROOLF1EQcR2niSX93aRUKDyexKPX8HEWzVqHW9OmVXYy0QnqxbshHzl5QhTaUyoUd6sPTlOjKLrajtDYBU8ESUJUnebDXx9LECeoMct_YtZhR34A3rRY2foQdmx1BHsu5dI0xzB8fltWqJotWd0mpDFUIBnBCvspx71lG2S4ov5kaO4z6pyJ_G2Y60PZ1QxVzQlc59nLw4h3t89b-mjmf6-Rp9BDQ9-eAdPCFkInvgpoDnRpdKkWxoZG-tqP_EKeQ3_bSRfbty9hH8E-psh3IPvQW9cbe4WAutYD92sD8O6zyfQJV-Ov7BtQkoFw
link.rule.ids 783,787,12779,21402,33387,33758,43614,43819
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5BKwQbT_EoYAlWS3HsJDULAyIN0FZIFKlbFLuO6JKWpB3499yFBAakzpZs2fLdd6_vDuBWC-uEzg3PpXBcofPFs8APuAn7kSP73faJKDwah8m7ep4G0ybgVjVlla1OrBX1bGEpRk6REI3-lFbifvnJaWoUZVebERrb0FUSgYaY4vHgN8bihxFazPKfmq2xI96H7mu2dOUBbLniEHbqkktbHcHg7WNeoGk2Z2VTkMbQgGQEK-yHjnvH1ihwWfnF0N1n1DkT5duyug9lyxkqqmO4iR8nDwlvT0-b_1Glf7eRJ9BBR9-dAjPCZcJEnvZpDnRuTa5n1ikrPeMFXibPoLdpp_PNy9ewm0xGw3T4NH65gD0E_pCy4L7sQWdVrt0lguvKXNUv-A1Y7oGH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shintani+relation+for+base+change%3A+unitary+and+elliptic+representations&rft.jtitle=arXiv.org&rft.au=Badulescu%2C+A+I&rft.au=Henniart%2C+G&rft.date=2016-05-23&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422