The ternary Goldbach problem with primes in positive density sets
Let \(\mathcal{P}\) denote the set of all primes. \(P_{1},P_{2},P_{3}\) are three subsets of \(\mathcal{P}\). Let \(\underline{\delta}(P_{i})\) \((i=1,2,3)\) denote the lower density of \(P_{i}\) in \(\mathcal{P}\), respectively. It is proved that if \(\underline{\delta}(P_{1})>5/8\), \(\underlin...
Saved in:
Published in | arXiv.org |
---|---|
Main Author | |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
27.02.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Let \(\mathcal{P}\) denote the set of all primes. \(P_{1},P_{2},P_{3}\) are three subsets of \(\mathcal{P}\). Let \(\underline{\delta}(P_{i})\) \((i=1,2,3)\) denote the lower density of \(P_{i}\) in \(\mathcal{P}\), respectively. It is proved that if \(\underline{\delta}(P_{1})>5/8\), \(\underline{\delta}(P_{2})\geq5/8\), and \(\underline{\delta}(P_{3})\geq5/8\), then for every sufficiently large odd integer n, there exist \(p_{i} \in P_{i}\) such that \(n=p_{1}+p_{2}+p_{3}\). The condition is the best possible. |
---|---|
AbstractList | Let \(\mathcal{P}\) denote the set of all primes. \(P_{1},P_{2},P_{3}\) are three subsets of \(\mathcal{P}\). Let \(\underline{\delta}(P_{i})\) \((i=1,2,3)\) denote the lower density of \(P_{i}\) in \(\mathcal{P}\), respectively. It is proved that if \(\underline{\delta}(P_{1})>5/8\), \(\underline{\delta}(P_{2})\geq5/8\), and \(\underline{\delta}(P_{3})\geq5/8\), then for every sufficiently large odd integer n, there exist \(p_{i} \in P_{i}\) such that \(n=p_{1}+p_{2}+p_{3}\). The condition is the best possible. |
Author | Shen, Quanli |
Author_xml | – sequence: 1 givenname: Quanli surname: Shen fullname: Shen, Quanli |
BookMark | eNqNjEsKwjAURYMoWLV7eOC4kCbWZiriZwGdl36eNCVNal-qdPdWcAGOzj1wORu2tM7iggVCyjhSByHWLCRqOefimIokkQE7ZQ2Cx8EWwwQ3Z-qyqBroB1ca7OCt_Vd0hwTaQu9Ie_1CqNHOawJCTzu2ehSGMPxxy_bXS3a-R3PkOSL5vHXj3DeUC56qOFZKKPnf6wPhWjt- |
ContentType | Paper |
Copyright | 2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Databases Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
ID | FETCH-proquest_journals_20781188283 |
IEDL.DBID | 8FG |
IngestDate | Thu Oct 10 16:47:59 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-proquest_journals_20781188283 |
OpenAccessLink | https://www.proquest.com/docview/2078118828?pq-origsite=%requestingapplication% |
PQID | 2078118828 |
PQPubID | 2050157 |
ParticipantIDs | proquest_journals_2078118828 |
PublicationCentury | 2000 |
PublicationDate | 20160227 |
PublicationDateYYYYMMDD | 2016-02-27 |
PublicationDate_xml | – month: 02 year: 2016 text: 20160227 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2016 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 3.019453 |
SecondaryResourceType | preprint |
Snippet | Let \(\mathcal{P}\) denote the set of all primes. \(P_{1},P_{2},P_{3}\) are three subsets of \(\mathcal{P}\). Let \(\underline{\delta}(P_{i})\) \((i=1,2,3)\)... |
SourceID | proquest |
SourceType | Aggregation Database |
SubjectTerms | Density |
Title | The ternary Goldbach problem with primes in positive density sets |
URI | https://www.proquest.com/docview/2078118828 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60i-CtvvBRS0Cvge5udrM5SZXdFqGliEJvZTdJUZA-dlehF3-7M3GrB6HHEEjIg29mvnyTAbgNRRFHUkfcF_OYkwPPlU5ybqTWNqEPwAxlI4_G8fBFPE6jaUO4VY2scouJDqjNUhNHTkxIgs4wBgh3qzWnqlH0utqU0NgHzw-kJElXkg1-OZYglugxh_9g1tmOrA3eJF_Z8gj27OIYDpzkUlcn0McTYo6OKzdssHw3Ra5fWVPghRE_ig1K0GBvC_ajrfq0zJDgvN6wytbVKdxk6fPDkG_nnTU3o5r9rSM8gxaG-PYcWM9QQqhSOoylyP2emhcYOEahQCgqVBRcQGfXSJe7u6_gEM280xoHsgOtuvyw12hK66Lr9qsL3n06njxha_SVfgMF1H24 |
link.rule.ids | 783,787,12778,21401,33386,33757,43613,43818 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB50F9GbT3xUDeg10O4j2T2JSuuq7VKkQm_L5lEsSFt3V6H_3kxM9SD0GAIJefDNzJdvMgDXYSRYzGVMO9GEUXTgaSqTkioupU7wAzCF2ciDnGWv0dM4HjvCrXayyhUmWqBWc4kcOTIhiXGGTYBws_igWDUKX1ddCY1N8PGrqsQD_66bD19-WZaAceMzh_-A1lqP3i74w3Khqz3Y0LN92LKiS1kfwK05I2IJuWpJHubvSpTyjbgSLwQZUtPAFA0ynZEfddWXJgol582S1LqpD-Gq1x3dZ3Q1b-HuRl38rSQ8As8E-foYSFthSmiaypDxqOy004kwoWMcRgaMRBoHJ9BaN9Lp-u5L2M5Gg37Rf8yfz2DHGH2rPA54C7ym-tTnxrA24sLt3jdFwX8- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+ternary+Goldbach+problem+with+primes+in+positive+density+sets&rft.jtitle=arXiv.org&rft.au=Shen%2C+Quanli&rft.date=2016-02-27&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422 |