Classification of meaningful and meaningless visual objects: a graph similarity approach

Cognition involves dynamic reconfiguration of functional brain networks at sub-second time scale. A precise tracking of these reconfigurations to categorize visual objects remains elusive. Here, we use dense electroencephalography (EEG) data recorded during naming meaningful (tools, animals) and scr...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Mheich, Ahmad, Hassan, Mahmoud, Wendling, Fabrice
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 02.06.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cognition involves dynamic reconfiguration of functional brain networks at sub-second time scale. A precise tracking of these reconfigurations to categorize visual objects remains elusive. Here, we use dense electroencephalography (EEG) data recorded during naming meaningful (tools, animals) and scrambled objects from 20 healthy subjects. We combine technique for identifying functional brain networks and recently developed algorithm for estimating networks similarity to discriminate between the two categories. First, we showed that dynamic networks of both categories can be segmented into several brain network states (times windows with consistent brain networks) reflecting sequential information processing from object representation to reaction time. Second, using a network similarity algorithm, results showed high intra-category and very low inter-category values. An average accuracy of 76% was obtained at different brain network states.
AbstractList Cognition involves dynamic reconfiguration of functional brain networks at sub-second time scale. A precise tracking of these reconfigurations to categorize visual objects remains elusive. Here, we use dense electroencephalography (EEG) data recorded during naming meaningful (tools, animals) and scrambled objects from 20 healthy subjects. We combine technique for identifying functional brain networks and recently developed algorithm for estimating networks similarity to discriminate between the two categories. First, we showed that dynamic networks of both categories can be segmented into several brain network states (times windows with consistent brain networks) reflecting sequential information processing from object representation to reaction time. Second, using a network similarity algorithm, results showed high intra-category and very low inter-category values. An average accuracy of 76% was obtained at different brain network states.
Author Mheich, Ahmad
Hassan, Mahmoud
Wendling, Fabrice
Author_xml – sequence: 1
  givenname: Ahmad
  surname: Mheich
  fullname: Mheich, Ahmad
– sequence: 2
  givenname: Mahmoud
  surname: Hassan
  fullname: Hassan, Mahmoud
– sequence: 3
  givenname: Fabrice
  surname: Wendling
  fullname: Wendling, Fabrice
BookMark eNqNirEOgjAUABujiaj8w0ucSUoBQVei8QMc3MwTWygpLfKKiX8vg-5Ol8vdis2ts3LGApEkcVSkQixZSNRyzsUuF1mWBOxaGiTSSlfotbPgFHQSrba1Gg2gffzUSCJ4aRrRgLu3svJ0AIR6wL4B0p02OGj_Buz7wWHVbNhCoSEZfrlm29PxUp6jKT9HSf7WunGwU7oJnmd7ztMiTv67Pm7yRFM
ContentType Paper
Copyright 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_20759004813
IEDL.DBID BENPR
IngestDate Thu Oct 10 16:36:18 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_20759004813
OpenAccessLink https://www.proquest.com/docview/2075900481?pq-origsite=%requestingapplication%
PQID 2075900481
PQPubID 2050157
ParticipantIDs proquest_journals_2075900481
PublicationCentury 2000
PublicationDate 20170602
PublicationDateYYYYMMDD 2017-06-02
PublicationDate_xml – month: 06
  year: 2017
  text: 20170602
  day: 02
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2017
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.0869813
SecondaryResourceType preprint
Snippet Cognition involves dynamic reconfiguration of functional brain networks at sub-second time scale. A precise tracking of these reconfigurations to categorize...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Brain
Cognition
Data processing
Electroencephalography
Networks
Reaction time
Reconfiguration
Similarity
Title Classification of meaningful and meaningless visual objects: a graph similarity approach
URI https://www.proquest.com/docview/2075900481
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5sguDNJz5qWdBrINkkzdaLoCQWoaWIQm4lj10IpKbtNh797c4siR6EHpeFZZ_fzPft7A7AfVR63I0mysG9WzqBCJUzyXM87kiIlHIlrgu9Rp7Nx9OP4DUN005w011YZY-JBqjLpiCNnJQQSnAZCO9xvXEoaxTdrnYpNAZgc2QKrgX2UzxfvP2qLHwcoc_s_wNaYz2SY7AX2VpuT-BAfp7CoQm6LPQZpCYjJcXqmOlhjWIrmZFQodqaIcXvizXCEfuqdJvVrMlJOdEPLGPms2mmq1WF9BS9adZ_EH4Od0n8_jx1-u4suy2jl38D9C_AQu4vL4EVCo9IWArhSxHwEoFVokvPJVcuL7inrmC4r6Xr_dU3cMTJSpGowIdg7batvEUbu8tHMBDJy6ibTizNvuMfBLuH8Q
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60QezNJz6qLug1kGySJvUiKC1R21CkQm4hj10IpKZ2m_5-Z5ZED0KPy8KSfX0z37eTGYAHv7C55Y-kiWe3MN3Ak-Yoy_C6IyGS0hK4L_Q38iwahp_uW-zFreCm2rDKDhM1UBd1Tho5KSFU4NIN7KfVt0lVo-h1tS2hsQ8GpapC8mU8j6P5x6_Kwoc--szOP6DV1mNyBMY8XYn1MeyJrxM40EGXuTqFWFekpFgdvTyslmwpUhIqZFMxpPhds0I4YttSNWnF6oyUE_XIUqaTTTNVLkukp-hNsy5B-BncT8aLl9DsPidpj4xK_ibonEMPub-4AJZLvCJeEQSOCFxeILAKdOm54NLiObflJQx2jXS1u_sODsPFbJpMX6P3a-hzslgkMPAB9DbrRtygvd1kt-2i_gAxyYjU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+meaningful+and+meaningless+visual+objects%3A+a+graph+similarity+approach&rft.jtitle=arXiv.org&rft.au=Mheich%2C+Ahmad&rft.au=Hassan%2C+Mahmoud&rft.au=Wendling%2C+Fabrice&rft.date=2017-06-02&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422