Memoryless Exact Solutions for Deterministic MDPs with Sparse Rewards

We propose an algorithm for deterministic continuous Markov Decision Processes with sparse rewards that computes the optimal policy exactly with no dependency on the size of the state space. The algorithm has time complexity of \(O( |R|^3 \times |A|^2 )\) and memory complexity of \(O( |R| \times |A|...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Bertram, Joshua R, Peng, Wei
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 17.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We propose an algorithm for deterministic continuous Markov Decision Processes with sparse rewards that computes the optimal policy exactly with no dependency on the size of the state space. The algorithm has time complexity of \(O( |R|^3 \times |A|^2 )\) and memory complexity of \(O( |R| \times |A| )\), where \(|R|\) is the number of reward sources and \(|A|\) is the number of actions. Furthermore, we describe a companion algorithm that can follow the optimal policy from any initial state without computing the entire value function, instead computing on-demand the value of states as they are needed. The algorithm to solve the MDP does not depend on the size of the state space for either time or memory complexity, and the ability to follow the optimal policy is linear in time and space with the path length of following the optimal policy from the initial state. We demonstrate the algorithm operation side by side with value iteration on tractable MDPs.
AbstractList We propose an algorithm for deterministic continuous Markov Decision Processes with sparse rewards that computes the optimal policy exactly with no dependency on the size of the state space. The algorithm has time complexity of \(O( |R|^3 \times |A|^2 )\) and memory complexity of \(O( |R| \times |A| )\), where \(|R|\) is the number of reward sources and \(|A|\) is the number of actions. Furthermore, we describe a companion algorithm that can follow the optimal policy from any initial state without computing the entire value function, instead computing on-demand the value of states as they are needed. The algorithm to solve the MDP does not depend on the size of the state space for either time or memory complexity, and the ability to follow the optimal policy is linear in time and space with the path length of following the optimal policy from the initial state. We demonstrate the algorithm operation side by side with value iteration on tractable MDPs.
Author Peng, Wei
Bertram, Joshua R
Author_xml – sequence: 1
  givenname: Joshua
  surname: Bertram
  middlename: R
  fullname: Bertram, Joshua R
– sequence: 2
  givenname: Wei
  surname: Peng
  fullname: Peng, Wei
BookMark eNqNys0KgkAUQOEhCrLyHS60FmzGn1yn0SaIbC-DXWlEZ2zuiPX2tegBWp3Fd1Zsro3GGfO4ELtgH3G-ZD5RG4YhT1Iex8JjxRl7Y98dEkHxkrWD0nSjU0YTNMZCjg5tr7Qip2o45xeCSbkHlIO0hHDFSdo7bdiikR2h_-uabY_F7XAKBmueI5KrWjNa_aWKh6mIkizLEvHf9QHpUzzc
ContentType Paper
Copyright 2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_20734699963
IEDL.DBID BENPR
IngestDate Thu Oct 10 15:26:24 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_20734699963
OpenAccessLink https://www.proquest.com/docview/2073469996?pq-origsite=%requestingapplication%
PQID 2073469996
PQPubID 2050157
ParticipantIDs proquest_journals_2073469996
PublicationCentury 2000
PublicationDate 20180517
PublicationDateYYYYMMDD 2018-05-17
PublicationDate_xml – month: 05
  year: 2018
  text: 20180517
  day: 17
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2018
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.1439326
SecondaryResourceType preprint
Snippet We propose an algorithm for deterministic continuous Markov Decision Processes with sparse rewards that computes the optimal policy exactly with no dependency...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Complexity
Computation
Dependence
Economic models
Iterative methods
Markov analysis
Markov processes
Title Memoryless Exact Solutions for Deterministic MDPs with Sparse Rewards
URI https://www.proquest.com/docview/2073469996
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwED5ci-Db_IW6OQL6WrDpzzwJutQhdJSpsLeRptcn0bpW0Bf_di8lmw_CHkMgIeG4u--7LzmA69LniDVyTyfmU23KSL2Sp5psGUWlNFd-aN475_N49hI-LqOlJdxaK6vc-MTeUVfv2nDkhgkJCMpRen7bfHima5SprtoWGgNwOSGFGwfcOzkvFluWhccJ5czBP0fbR49sCG6hGlwfwh6-HcF-L7rU7THI3Mhcv1_J2TD5pXTHtiQVo1ySTa1Upf9LmeXTomWGNmVPDaFRZAs0itf2BK4y-Xw_8zZ7r6x9tKu_0wSn4BDQxzNgNYGXqhRxLcIq9GuRJgHF50hhqTBKRXQO410rXeyeHsEBBfvUVL79ZAxOt_7ESwqoXTmBQZo9TOzd0Sj_kb_aXoFb
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60QfTmEx9VF_SaQ97JqVCbErUJoVboLWw2k5NobCLov3cmbOtB6Hlhl12Gmfm--XYG4L60bMQabVMF3FSbMlKztENFtoxRJZUtLZf_O6eZn7y6T0tvqQm3Vssq1z6xd9TVh2KOnJkQh6Acpeej5tPkqVFcXdUjNHbB4FZVBL6McZzl8w3LYvsB5czOP0fbR4_pIRi5bHB1BDv4fgx7vehStScQpyxz_XkjZyPib6k6sSGpBOWSYqKlKn0vZZFO8lYwbSpeGkKjKObIitf2FO6m8eIhMddnF9o-2uLvNs4ZDAjo4zmImsBLVUZ-HbmVa9VRGDgUnz2JpUQvjLwLGG7b6XL78i3sJ4t0Vswes-crOKDAH3IV3AqGMOhWX3hNwbUrb_QL_gIGA4I-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Memoryless+Exact+Solutions+for+Deterministic+MDPs+with+Sparse+Rewards&rft.jtitle=arXiv.org&rft.au=Bertram%2C+Joshua+R&rft.au=Peng%2C+Wei&rft.date=2018-05-17&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422