Scalable Sparse Subspace Clustering via Ordered Weighted \(\ell_1\) Regression

The main contribution of the paper is a new approach to subspace clustering that is significantly more computationally efficient and scalable than existing state-of-the-art methods. The central idea is to modify the regression technique in sparse subspace clustering (SSC) by replacing the \(\ell_1\)...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Oswal, Urvashi, Nowak, Robert
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 10.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The main contribution of the paper is a new approach to subspace clustering that is significantly more computationally efficient and scalable than existing state-of-the-art methods. The central idea is to modify the regression technique in sparse subspace clustering (SSC) by replacing the \(\ell_1\) minimization with a generalization called Ordered Weighted \(\ell_1\) (OWL) minimization which performs simultaneous regression and clustering of correlated variables. Using random geometric graph theory, we prove that OWL regression selects more points within each subspace, resulting in better clustering results. This allows for accurate subspace clustering based on regression solutions for only a small subset of the total dataset, significantly reducing the computational complexity compared to SSC. In experiments, we find that our OWL approach can achieve a speedup of 20\(\times\) to 30\(\times\) for synthetic problems and 4\(\times\) to 8\(\times\) on real data problems.
AbstractList The main contribution of the paper is a new approach to subspace clustering that is significantly more computationally efficient and scalable than existing state-of-the-art methods. The central idea is to modify the regression technique in sparse subspace clustering (SSC) by replacing the \(\ell_1\) minimization with a generalization called Ordered Weighted \(\ell_1\) (OWL) minimization which performs simultaneous regression and clustering of correlated variables. Using random geometric graph theory, we prove that OWL regression selects more points within each subspace, resulting in better clustering results. This allows for accurate subspace clustering based on regression solutions for only a small subset of the total dataset, significantly reducing the computational complexity compared to SSC. In experiments, we find that our OWL approach can achieve a speedup of 20\(\times\) to 30\(\times\) for synthetic problems and 4\(\times\) to 8\(\times\) on real data problems.
Author Nowak, Robert
Oswal, Urvashi
Author_xml – sequence: 1
  givenname: Urvashi
  surname: Oswal
  fullname: Oswal, Urvashi
– sequence: 2
  givenname: Robert
  surname: Nowak
  fullname: Nowak, Robert
BookMark eNqNikELgjAYQEcUZOV_GHSpg6Bb6u5SdCrIoIsgU79sMjbbp_3-PPQDOr0H763I3FgDM-IxzqNAHBhbEh-xC8OQJSmLY-6RS15LLSsNNO-lwwljhb2sgWZ6xAGcMi39KEmvrgEHDX2Aal_DJMWuAK3LqNjTG7QOEJU1G7J4So3g_7gm29Pxnp2D3tn3CDiUnR2dmVLJwpTzJBFC8P-uL-qVP1s
ContentType Paper
Copyright 2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Engineering Collection
ProQuest Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_20733668883
IEDL.DBID 8FG
IngestDate Thu Oct 10 17:03:22 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_20733668883
OpenAccessLink https://www.proquest.com/docview/2073366888?pq-origsite=%requestingapplication%
PQID 2073366888
PQPubID 2050157
ParticipantIDs proquest_journals_2073366888
PublicationCentury 2000
PublicationDate 20180710
PublicationDateYYYYMMDD 2018-07-10
PublicationDate_xml – month: 07
  year: 2018
  text: 20180710
  day: 10
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2018
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.15664
SecondaryResourceType preprint
Snippet The main contribution of the paper is a new approach to subspace clustering that is significantly more computationally efficient and scalable than existing...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Clustering
Graph theory
Optimization
Random variables
Regression
Subspaces
Title Scalable Sparse Subspace Clustering via Ordered Weighted \(\ell_1\) Regression
URI https://www.proquest.com/docview/2073366888
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFH7oiuDNn_hjjoAe9BBoly5tT4KjdQjWsSnuUChpk8qgzNpuHv3bfYmdHoSdkhAISUjel-_LSx7AFQ-CbIBIShXCGXWVlFQIyalkg6AoOPOYML99xnz04j7MBrNWcGtat8q1TTSGWr7nWiPXSghjnCNhu60-qI4apW9X2xAa22A5fc_T5MuP7n81lj738MTM_plZgx3RHlhjUal6H7bU4gB2jMtl3hxCPMXp0Q-XyLRCdokJ7mFksIoMy5X-vgBBhXzOBXmqTUBN8mpUTMwk14kqy9RJbshEvf04si6O4DIKn4cjuu5E2i6TJv0bFDuGDvJ9dQJE-ogreeDbspCunXMhGEP-a2cZ8zJXOqfQ3dTS2ebqc9hFzPe1POnYXegs65W6QFxdZj0zeT2w7sJ4PMHS41f4DdLvgzM
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFH7ohujNn_hjakAPegi0pk3bk4dhrTqruIk7FErapEMos7abf78vsdODsFMCgZCE5H35vryXB3DOgyBzEUmpQjijjpKSCiE5lcwNioIzjwnz22fMo1fnfuyOW8Gtad0qFzbRGGr5kWuNXCshjHGOhO26-qQ6a5R-XW1TaKxC12GI1TpSPLz91ViuuIc3ZvbPzBrsCDeh-ywqVW_Bippuw5pxucybHYiHuDw6cIkMK2SXWOAZRgarSL-c6-8LEFTI17sgT7VJqEnejIqJleQiUWWZ2skleVGTH0fW6S6chTejfkQXg0jbbdKkf5Nie9BBvq_2gUgfcSUPfEsW0rFyLgRjyH-tLGNe5kj7AHrLejpc3nwK69HocZAO7uKHI9hA_Pe1VGlbPejM6rk6RoydZSdmIb8B142DSg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+Sparse+Subspace+Clustering+via+Ordered+Weighted+%5C%28%5Cell_1%5C%29+Regression&rft.jtitle=arXiv.org&rft.au=Oswal%2C+Urvashi&rft.au=Nowak%2C+Robert&rft.date=2018-07-10&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422