Scalable Sparse Subspace Clustering via Ordered Weighted \(\ell_1\) Regression
The main contribution of the paper is a new approach to subspace clustering that is significantly more computationally efficient and scalable than existing state-of-the-art methods. The central idea is to modify the regression technique in sparse subspace clustering (SSC) by replacing the \(\ell_1\)...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
10.07.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The main contribution of the paper is a new approach to subspace clustering that is significantly more computationally efficient and scalable than existing state-of-the-art methods. The central idea is to modify the regression technique in sparse subspace clustering (SSC) by replacing the \(\ell_1\) minimization with a generalization called Ordered Weighted \(\ell_1\) (OWL) minimization which performs simultaneous regression and clustering of correlated variables. Using random geometric graph theory, we prove that OWL regression selects more points within each subspace, resulting in better clustering results. This allows for accurate subspace clustering based on regression solutions for only a small subset of the total dataset, significantly reducing the computational complexity compared to SSC. In experiments, we find that our OWL approach can achieve a speedup of 20\(\times\) to 30\(\times\) for synthetic problems and 4\(\times\) to 8\(\times\) on real data problems. |
---|---|
AbstractList | The main contribution of the paper is a new approach to subspace clustering that is significantly more computationally efficient and scalable than existing state-of-the-art methods. The central idea is to modify the regression technique in sparse subspace clustering (SSC) by replacing the \(\ell_1\) minimization with a generalization called Ordered Weighted \(\ell_1\) (OWL) minimization which performs simultaneous regression and clustering of correlated variables. Using random geometric graph theory, we prove that OWL regression selects more points within each subspace, resulting in better clustering results. This allows for accurate subspace clustering based on regression solutions for only a small subset of the total dataset, significantly reducing the computational complexity compared to SSC. In experiments, we find that our OWL approach can achieve a speedup of 20\(\times\) to 30\(\times\) for synthetic problems and 4\(\times\) to 8\(\times\) on real data problems. |
Author | Nowak, Robert Oswal, Urvashi |
Author_xml | – sequence: 1 givenname: Urvashi surname: Oswal fullname: Oswal, Urvashi – sequence: 2 givenname: Robert surname: Nowak fullname: Nowak, Robert |
BookMark | eNqNikELgjAYQEcUZOV_GHSpg6Bb6u5SdCrIoIsgU79sMjbbp_3-PPQDOr0H763I3FgDM-IxzqNAHBhbEh-xC8OQJSmLY-6RS15LLSsNNO-lwwljhb2sgWZ6xAGcMi39KEmvrgEHDX2Aal_DJMWuAK3LqNjTG7QOEJU1G7J4So3g_7gm29Pxnp2D3tn3CDiUnR2dmVLJwpTzJBFC8P-uL-qVP1s |
ContentType | Paper |
Copyright | 2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Engineering Collection ProQuest Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
ID | FETCH-proquest_journals_20733668883 |
IEDL.DBID | 8FG |
IngestDate | Thu Oct 10 17:03:22 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-proquest_journals_20733668883 |
OpenAccessLink | https://www.proquest.com/docview/2073366888?pq-origsite=%requestingapplication% |
PQID | 2073366888 |
PQPubID | 2050157 |
ParticipantIDs | proquest_journals_2073366888 |
PublicationCentury | 2000 |
PublicationDate | 20180710 |
PublicationDateYYYYMMDD | 2018-07-10 |
PublicationDate_xml | – month: 07 year: 2018 text: 20180710 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2018 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 3.15664 |
SecondaryResourceType | preprint |
Snippet | The main contribution of the paper is a new approach to subspace clustering that is significantly more computationally efficient and scalable than existing... |
SourceID | proquest |
SourceType | Aggregation Database |
SubjectTerms | Clustering Graph theory Optimization Random variables Regression Subspaces |
Title | Scalable Sparse Subspace Clustering via Ordered Weighted \(\ell_1\) Regression |
URI | https://www.proquest.com/docview/2073366888 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFH7oiuDNn_hjjoAe9BBoly5tT4KjdQjWsSnuUChpk8qgzNpuHv3bfYmdHoSdkhAISUjel-_LSx7AFQ-CbIBIShXCGXWVlFQIyalkg6AoOPOYML99xnz04j7MBrNWcGtat8q1TTSGWr7nWiPXSghjnCNhu60-qI4apW9X2xAa22A5fc_T5MuP7n81lj738MTM_plZgx3RHlhjUal6H7bU4gB2jMtl3hxCPMXp0Q-XyLRCdokJ7mFksIoMy5X-vgBBhXzOBXmqTUBN8mpUTMwk14kqy9RJbshEvf04si6O4DIKn4cjuu5E2i6TJv0bFDuGDvJ9dQJE-ogreeDbspCunXMhGEP-a2cZ8zJXOqfQ3dTS2ebqc9hFzPe1POnYXegs65W6QFxdZj0zeT2w7sJ4PMHS41f4DdLvgzM |
link.rule.ids | 783,787,12777,21400,33385,33756,43612,43817 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFH7ohujNn_hjakAPegi0pk3bk4dhrTqruIk7FErapEMos7abf78vsdODsFMCgZCE5H35vryXB3DOgyBzEUmpQjijjpKSCiE5lcwNioIzjwnz22fMo1fnfuyOW8Gtad0qFzbRGGr5kWuNXCshjHGOhO26-qQ6a5R-XW1TaKxC12GI1TpSPLz91ViuuIc3ZvbPzBrsCDeh-ywqVW_Bippuw5pxucybHYiHuDw6cIkMK2SXWOAZRgarSL-c6-8LEFTI17sgT7VJqEnejIqJleQiUWWZ2skleVGTH0fW6S6chTejfkQXg0jbbdKkf5Nie9BBvq_2gUgfcSUPfEsW0rFyLgRjyH-tLGNe5kj7AHrLejpc3nwK69HocZAO7uKHI9hA_Pe1VGlbPejM6rk6RoydZSdmIb8B142DSg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+Sparse+Subspace+Clustering+via+Ordered+Weighted+%5C%28%5Cell_1%5C%29+Regression&rft.jtitle=arXiv.org&rft.au=Oswal%2C+Urvashi&rft.au=Nowak%2C+Robert&rft.date=2018-07-10&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422 |