Finding Frequent Entities in Continuous Data
In many applications that involve processing high-dimensional data, it is important to identify a small set of entities that account for a significant fraction of detections. Rather than formalize this as a clustering problem, in which all detections must be grouped into hard or soft categories, we...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
08.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In many applications that involve processing high-dimensional data, it is important to identify a small set of entities that account for a significant fraction of detections. Rather than formalize this as a clustering problem, in which all detections must be grouped into hard or soft categories, we formalize it as an instance of the frequent items or heavy hitters problem, which finds groups of tightly clustered objects that have a high density in the feature space. We show that the heavy hitters formulation generates solutions that are more accurate and effective than the clustering formulation. In addition, we present a novel online algorithm for heavy hitters, called HAC, which addresses problems in continuous space, and demonstrate its effectiveness on real video and household domains. |
---|---|
ISSN: | 2331-8422 |