Conjugacy and cocycle conjugacy of automorphisms of \(\mathcal{O}_{2}\) are not Borel

The group of automorphisms of the Cuntz algebra \(\mathcal{O}_{2}\) is a Polish group with respect to the topology of pointwise convergence in norm. Our main result is that the relations of conjugacy and cocycle conjugacy of automorphisms of \(\mathcal{O}_{2}\) are complete analytic sets and, in par...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Gardella, Eusebio, Martino Lupini
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 14.04.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The group of automorphisms of the Cuntz algebra \(\mathcal{O}_{2}\) is a Polish group with respect to the topology of pointwise convergence in norm. Our main result is that the relations of conjugacy and cocycle conjugacy of automorphisms of \(\mathcal{O}_{2}\) are complete analytic sets and, in particular, not Borel. Moreover, we show that from the point of view of Borel complexity theory, classifying automorphisms of \(\mathcal{O}_{2}\) up to conjugacy or cocycle conjugacy is strictly more difficult than classifying up to isomorphism any class of countable structures with Borel isomorphism relation. In fact the same conclusions hold even if one only considers automorphisms of \(\mathcal{O}_{2}\) of a fixed finite order. In the course of the proof we will show that the relation of isomorphism of Kichberg algebras (with trivial \(K_{1}\)-group and satisfying the Universal Coefficient Theorem) is a complete anaytic set. Moreover, it is strictly more difficult to classify Kirchberg algebras (with trivial \(K_{1}\)-group and satisfying the Universal Coefficient Theorem) than classifying up to isomorphism any class of countable structures with Borel isomorphism relation.
AbstractList The group of automorphisms of the Cuntz algebra \(\mathcal{O}_{2}\) is a Polish group with respect to the topology of pointwise convergence in norm. Our main result is that the relations of conjugacy and cocycle conjugacy of automorphisms of \(\mathcal{O}_{2}\) are complete analytic sets and, in particular, not Borel. Moreover, we show that from the point of view of Borel complexity theory, classifying automorphisms of \(\mathcal{O}_{2}\) up to conjugacy or cocycle conjugacy is strictly more difficult than classifying up to isomorphism any class of countable structures with Borel isomorphism relation. In fact the same conclusions hold even if one only considers automorphisms of \(\mathcal{O}_{2}\) of a fixed finite order. In the course of the proof we will show that the relation of isomorphism of Kichberg algebras (with trivial \(K_{1}\)-group and satisfying the Universal Coefficient Theorem) is a complete anaytic set. Moreover, it is strictly more difficult to classify Kirchberg algebras (with trivial \(K_{1}\)-group and satisfying the Universal Coefficient Theorem) than classifying up to isomorphism any class of countable structures with Borel isomorphism relation.
Author Gardella, Eusebio
Martino Lupini
Author_xml – sequence: 1
  givenname: Eusebio
  surname: Gardella
  fullname: Gardella, Eusebio
– sequence: 2
  fullname: Martino Lupini
BookMark eNqNikELgjAYQEcUZOV_GHSpg6Bbpl6ToluXugky1sxk7rPNHUT87xnUvdOD994CTRUoMUEOoTTw4h0hc-QaU_m-T_YRCUPqoFsKqrIPxjvM1B1z4B2XYuTPQoGZbaEG3ZRPU5uPyDZZzdqSM9lfhrwnQ7bFTAusoMUH0EKu0Kxg0gj3yyVan47X9Ow1Gl5WmDavwGo1ppz4UUBpFCcJ_e96AzmKQoY
ContentType Paper
Copyright 2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_20713378993
IEDL.DBID BENPR
IngestDate Thu Oct 10 19:35:39 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_20713378993
OpenAccessLink https://www.proquest.com/docview/2071337899?pq-origsite=%requestingapplication%
PQID 2071337899
PQPubID 2050157
ParticipantIDs proquest_journals_2071337899
PublicationCentury 2000
PublicationDate 20140414
PublicationDateYYYYMMDD 2014-04-14
PublicationDate_xml – month: 04
  year: 2014
  text: 20140414
  day: 14
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2014
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 2.9305134
SecondaryResourceType preprint
Snippet The group of automorphisms of the Cuntz algebra \(\mathcal{O}_{2}\) is a Polish group with respect to the topology of pointwise convergence in norm. Our main...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algebra
Automorphisms
Classification
Completeness
Complexity theory
Isomorphism
Theorems
Topology
Title Conjugacy and cocycle conjugacy of automorphisms of \(\mathcal{O}_{2}\) are not Borel
URI https://www.proquest.com/docview/2071337899
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB7sLoI3n_ioJaAHPSzsu7snoWXXIliLWOihUJJN4gO7qfs4lFJ_u7PLVg9CLwmZQEgmycx8kyEDcB1w5jgsoAbeJm64LHENFnpoyFmBtGhic87q3z6H_mDsPky8SeNwy5uwyo1MrAU1V0nlI688IQinuggP7hZfRpU1qnpdbVJotEC3ESmYGui9aDh6_vWy2H4XbWbnn6CttUe8D_qILkR2ADsiPYTdOugyyY9g3FfpR_lKkyVBPE9QNC1xE7HeUJUktCzUXCEz3vN5XhGmN1M0Mt-Qtaun9Wxlr6e3hGaCpKogPZWJz2O4iqOX_sDYzGXWnJd89rc65wQ0BP7iFEggQ9NHAOmGLHQllqYjQp96vvSk5F12Bu1tI51v776APVT-dRSK5bZBK7JSXKKCLVgHWkF832l4ia3H7-gH6EWG6g
link.rule.ids 783,787,12777,21400,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQsUhJMjZOskjUBeamFF2TpGQT3SRLU2BDztAizTAx2SglJQl82qefmUeoiVeEaQR0wK0YuqwSViaCC-qU_GTQGDloJATYnTIHdg_sCwp1QbdGgWZXoVdoMDOwmhgD62rQTnE3d_gYi5GZObDFbIxRzILrDjdBBtaAxILUIiEGptQ8YQZ28JLL5GIRhlDn_Lys0vTE5EoFYG9eAVgwVQKjEEjDRPPTFBJLS_Jz84FBkVmcWwwSiNGIATYxM4ABW-1fG19tVBujqZBYlKqQl1-i4JRflJojyqDs5hri7KELc0s8NLUUxyP8ZizGwALs9qdKMChYpFkamAG7jyaWSZYmaUDSwDjV0izR1CzNNC0txTxJkkEGn0lS-KXlGTg9Qnx94n08_bylGbiAzQDwehRDExkGlpKi0lRZYFVbkiQHDk8AxHqGXg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conjugacy+and+cocycle+conjugacy+of+automorphisms+of+%5C%28%5Cmathcal%7BO%7D_%7B2%7D%5C%29+are+not+Borel&rft.jtitle=arXiv.org&rft.au=Gardella%2C+Eusebio&rft.au=Martino+Lupini&rft.date=2014-04-14&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422