Conjugacy and cocycle conjugacy of automorphisms of \(\mathcal{O}_{2}\) are not Borel
The group of automorphisms of the Cuntz algebra \(\mathcal{O}_{2}\) is a Polish group with respect to the topology of pointwise convergence in norm. Our main result is that the relations of conjugacy and cocycle conjugacy of automorphisms of \(\mathcal{O}_{2}\) are complete analytic sets and, in par...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , |
Format | Paper |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
14.04.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The group of automorphisms of the Cuntz algebra \(\mathcal{O}_{2}\) is a Polish group with respect to the topology of pointwise convergence in norm. Our main result is that the relations of conjugacy and cocycle conjugacy of automorphisms of \(\mathcal{O}_{2}\) are complete analytic sets and, in particular, not Borel. Moreover, we show that from the point of view of Borel complexity theory, classifying automorphisms of \(\mathcal{O}_{2}\) up to conjugacy or cocycle conjugacy is strictly more difficult than classifying up to isomorphism any class of countable structures with Borel isomorphism relation. In fact the same conclusions hold even if one only considers automorphisms of \(\mathcal{O}_{2}\) of a fixed finite order. In the course of the proof we will show that the relation of isomorphism of Kichberg algebras (with trivial \(K_{1}\)-group and satisfying the Universal Coefficient Theorem) is a complete anaytic set. Moreover, it is strictly more difficult to classify Kirchberg algebras (with trivial \(K_{1}\)-group and satisfying the Universal Coefficient Theorem) than classifying up to isomorphism any class of countable structures with Borel isomorphism relation. |
---|---|
AbstractList | The group of automorphisms of the Cuntz algebra \(\mathcal{O}_{2}\) is a Polish group with respect to the topology of pointwise convergence in norm. Our main result is that the relations of conjugacy and cocycle conjugacy of automorphisms of \(\mathcal{O}_{2}\) are complete analytic sets and, in particular, not Borel. Moreover, we show that from the point of view of Borel complexity theory, classifying automorphisms of \(\mathcal{O}_{2}\) up to conjugacy or cocycle conjugacy is strictly more difficult than classifying up to isomorphism any class of countable structures with Borel isomorphism relation. In fact the same conclusions hold even if one only considers automorphisms of \(\mathcal{O}_{2}\) of a fixed finite order. In the course of the proof we will show that the relation of isomorphism of Kichberg algebras (with trivial \(K_{1}\)-group and satisfying the Universal Coefficient Theorem) is a complete anaytic set. Moreover, it is strictly more difficult to classify Kirchberg algebras (with trivial \(K_{1}\)-group and satisfying the Universal Coefficient Theorem) than classifying up to isomorphism any class of countable structures with Borel isomorphism relation. |
Author | Gardella, Eusebio Martino Lupini |
Author_xml | – sequence: 1 givenname: Eusebio surname: Gardella fullname: Gardella, Eusebio – sequence: 2 fullname: Martino Lupini |
BookMark | eNqNikELgjAYQEcUZOV_GHSpg6Bbpl6ToluXugky1sxk7rPNHUT87xnUvdOD994CTRUoMUEOoTTw4h0hc-QaU_m-T_YRCUPqoFsKqrIPxjvM1B1z4B2XYuTPQoGZbaEG3ZRPU5uPyDZZzdqSM9lfhrwnQ7bFTAusoMUH0EKu0Kxg0gj3yyVan47X9Ow1Gl5WmDavwGo1ppz4UUBpFCcJ_e96AzmKQoY |
ContentType | Paper |
Copyright | 2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PIMPY PQEST PQQKQ PQUKI PRINS PTHSS |
ID | FETCH-proquest_journals_20713378993 |
IEDL.DBID | BENPR |
IngestDate | Thu Oct 10 19:35:39 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-proquest_journals_20713378993 |
OpenAccessLink | https://www.proquest.com/docview/2071337899?pq-origsite=%requestingapplication% |
PQID | 2071337899 |
PQPubID | 2050157 |
ParticipantIDs | proquest_journals_2071337899 |
PublicationCentury | 2000 |
PublicationDate | 20140414 |
PublicationDateYYYYMMDD | 2014-04-14 |
PublicationDate_xml | – month: 04 year: 2014 text: 20140414 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2014 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 2.9305134 |
SecondaryResourceType | preprint |
Snippet | The group of automorphisms of the Cuntz algebra \(\mathcal{O}_{2}\) is a Polish group with respect to the topology of pointwise convergence in norm. Our main... |
SourceID | proquest |
SourceType | Aggregation Database |
SubjectTerms | Algebra Automorphisms Classification Completeness Complexity theory Isomorphism Theorems Topology |
Title | Conjugacy and cocycle conjugacy of automorphisms of \(\mathcal{O}_{2}\) are not Borel |
URI | https://www.proquest.com/docview/2071337899 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB7sLoI3n_ioJaAHPSzsu7snoWXXIliLWOihUJJN4gO7qfs4lFJ_u7PLVg9CLwmZQEgmycx8kyEDcB1w5jgsoAbeJm64LHENFnpoyFmBtGhic87q3z6H_mDsPky8SeNwy5uwyo1MrAU1V0nlI688IQinuggP7hZfRpU1qnpdbVJotEC3ESmYGui9aDh6_vWy2H4XbWbnn6CttUe8D_qILkR2ADsiPYTdOugyyY9g3FfpR_lKkyVBPE9QNC1xE7HeUJUktCzUXCEz3vN5XhGmN1M0Mt-Qtaun9Wxlr6e3hGaCpKogPZWJz2O4iqOX_sDYzGXWnJd89rc65wQ0BP7iFEggQ9NHAOmGLHQllqYjQp96vvSk5F12Bu1tI51v776APVT-dRSK5bZBK7JSXKKCLVgHWkF832l4ia3H7-gH6EWG6g |
link.rule.ids | 783,787,12777,21400,33385,33756,43612,43817 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQsUhJMjZOskjUBeamFF2TpGQT3SRLU2BDztAizTAx2SglJQl82qefmUeoiVeEaQR0wK0YuqwSViaCC-qU_GTQGDloJATYnTIHdg_sCwp1QbdGgWZXoVdoMDOwmhgD62rQTnE3d_gYi5GZObDFbIxRzILrDjdBBtaAxILUIiEGptQ8YQZ28JLL5GIRhlDn_Lys0vTE5EoFYG9eAVgwVQKjEEjDRPPTFBJLS_Jz84FBkVmcWwwSiNGIATYxM4ABW-1fG19tVBujqZBYlKqQl1-i4JRflJojyqDs5hri7KELc0s8NLUUxyP8ZizGwALs9qdKMChYpFkamAG7jyaWSZYmaUDSwDjV0izR1CzNNC0txTxJkkEGn0lS-KXlGTg9Qnx94n08_bylGbiAzQDwehRDExkGlpKi0lRZYFVbkiQHDk8AxHqGXg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conjugacy+and+cocycle+conjugacy+of+automorphisms+of+%5C%28%5Cmathcal%7BO%7D_%7B2%7D%5C%29+are+not+Borel&rft.jtitle=arXiv.org&rft.au=Gardella%2C+Eusebio&rft.au=Martino+Lupini&rft.date=2014-04-14&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422 |