Vector Autoregression with Mixed Frequency Data

Three new approaches are proposed to handle mixed frequency Vector Autoregression. The first is an explicit solution to the likelihood and posterior distribution. The second is a parsimonious, time-invariant and invertible state space form. The third is a parallel Gibbs sampler without forward filte...

Full description

Saved in:
Bibliographic Details
Published inIDEAS Working Paper Series from RePEc
Main Author Qian, Hang
Format Paper
LanguageEnglish
Published St. Louis Federal Reserve Bank of St. Louis 01.01.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Three new approaches are proposed to handle mixed frequency Vector Autoregression. The first is an explicit solution to the likelihood and posterior distribution. The second is a parsimonious, time-invariant and invertible state space form. The third is a parallel Gibbs sampler without forward filtering and backward sampling. The three methods are unified since all of them explore the fact that the mixed frequency observations impose linear constraints on the distribution of high frequency latent variables. By a simulation study, different approaches are compared and the parallel Gibbs sampler outperforms others. A financial application on the yield curve forecast is conducted using mixed frequency macro-finance data.
AbstractList Three new approaches are proposed to handle mixed frequency Vector Autoregression. The first is an explicit solution to the likelihood and posterior distribution. The second is a parsimonious, time-invariant and invertible state space form. The third is a parallel Gibbs sampler without forward filtering and backward sampling. The three methods are unified since all of them explore the fact that the mixed frequency observations impose linear constraints on the distribution of high frequency latent variables. By a simulation study, different approaches are compared and the parallel Gibbs sampler outperforms others. A financial application on the yield curve forecast is conducted using mixed frequency macro-finance data.
Author Qian, Hang
Author_xml – sequence: 1
  givenname: Hang
  surname: Qian
  fullname: Qian, Hang
BookMark eNrjYmDJy89L5WTQD0tNLskvUnAsBZKp6UWpxcWZ-XkK5ZklGQq-mRWpKQpuRamFpal5yZUKLokliTwMrGmJOcWpvFCam0HZzTXE2UO3oCgfqKy4JD4rv7QoDygVb2hmaWlkBiQsjYlTBQAe1C-O
ContentType Paper
Copyright Copyright FEDERAL RESERVE BANK OF ST LOUIS 2013
Copyright_xml – notice: Copyright FEDERAL RESERVE BANK OF ST LOUIS 2013
DBID 3V.
7WY
7WZ
7XB
87Z
8FK
8FL
AAFGM
ABLUL
ABPUF
ABSSA
ABUWG
ACIOU
ADZZV
AFKRA
AGAJT
AGSBL
AJNOY
AQTIP
AZQEC
BENPR
BEZIV
BOUDT
CBHQV
CCPQU
DWQXO
FRNLG
F~G
K60
K6~
L.-
M0C
PIMPY
PQBIZ
PQBZA
PQCXX
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DatabaseName ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central Korea - hybrid linking
Business Premium Collection - hybrid linking
ABI/INFORM Collection (Alumni) - hybrid linking
ABI/INFORM Collection - hybrid linking
ProQuest Central (Alumni)
ABI/INFORM Global - hybrid linking
ProQuest Central (Alumni) - hybrid linking
ProQuest Central
ProQuest Central Essentials - hybrid linking
ABI/INFORM Global (Alumni) - hybrid linking
Business Premium Collection (Alumni) - hybrid linking
ProQuest Women's & Gender Studies - hybrid linking
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Business Premium Collection
ProQuest One Business - hybrid linking
ProQuest One Business (Alumni) - hybrid linking
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ABI/INFORM Professional Advanced
ABI/INFORM Global (ProQuest)
Publicly Available Content Database
One Business
ProQuest One Business (Alumni)
ProQuest Central - hybrid linking
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle Publicly Available Content Database
Business Premium Collection
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ABI/INFORM Global
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Business Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Business (Alumni)
ProQuest One Academic
ABI/INFORM Complete (Alumni Edition)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 3760316081
Genre Working Paper/Pre-Print
GroupedDBID 3V.
7WY
7XB
8FK
8FL
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
CCPQU
DWQXO
FRNLG
K60
K6~
L.-
M0C
PIMPY
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-proquest_journals_16992669993
IEDL.DBID BENPR
IngestDate Thu Oct 10 22:20:24 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_16992669993
OpenAccessLink https://www.proquest.com/docview/1699266999?pq-origsite=%requestingapplication%
PQID 1699266999
PQPubID 2036240
ParticipantIDs proquest_journals_1699266999
PublicationCentury 2000
PublicationDate 20130101
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 20130101
  day: 01
PublicationDecade 2010
PublicationPlace St. Louis
PublicationPlace_xml – name: St. Louis
PublicationTitle IDEAS Working Paper Series from RePEc
PublicationYear 2013
Publisher Federal Reserve Bank of St. Louis
Publisher_xml – name: Federal Reserve Bank of St. Louis
Score 2.8794804
Snippet Three new approaches are proposed to handle mixed frequency Vector Autoregression. The first is an explicit solution to the likelihood and posterior...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Regression analysis
Title Vector Autoregression with Mixed Frequency Data
URI https://www.proquest.com/docview/1699266999
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQSUxKNgE2U1N0zc3STHRNTEHXvBgbGeoaJQFrazODRENzC9B-Z18_M49QE68I0wjogFsxdFklrEwEF9Qp-cmgMXJ9QzNLS2BlAmzP2BcU6oJujQLNrkKv0GBmYDUCndzEwsDq5OoXEIRRsIJrCzdBBtaAxILUIiEGptQ8EQb9MPDAuIIj6LSA1HTIutM8BdAAqIJvZkVqioJbEWQ9c6WCS2JJoiiDsptriLOHLszseGh8F8cjXGcsxsAC7LinSjAopBimAutnI-M0E-MUk7RUoKRJIrD7YWppbJloZGxmJskgg88kKfzS0gxcRuCrGUDDATIMLCVFpamywAqyJEkOGgoAzOhvQA
link.rule.ids 786,790,21409,33768,43829
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQSUxKNgE2U1N0zc3STHRNTEHXvBgbGeoaJQFrazODRENzC9B-Z18_M49QE68I0wjogFsxdFklrEwEF9Qp-cmgMXJ9QzNLS2BlAmzP2BcU6oJujQLNrkKv0GBmYAVNaAFTNauTq19AEEbBCq4t3AQZWAMSC1KLhBiYUvNEGPTDwAPjCo6g0wJS0yHrTvMUQAOgCr6ZFakpCm5FkPXMlQouiSWJogzKbq4hzh66MLPjofFdHI9wnbEYAwuw454qwaCQYpgKrJ-NjNNMjFNM0lKBkiaJwO6HqaWxZaKRsZmZJIMMPpOk8EvLM3B6hPj6xPt4-nlLM3AZga9pAA0NyDCwlBSVpsoCK8uSJDloiAAALxJyNA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vector+Autoregression+with+Mixed+Frequency+Data&rft.jtitle=IDEAS+Working+Paper+Series+from+RePEc&rft.au=Qian%2C+Hang&rft.date=2013-01-01&rft.pub=Federal+Reserve+Bank+of+St.+Louis&rft.externalDocID=3760316081