Vector Autoregression with Mixed Frequency Data
Three new approaches are proposed to handle mixed frequency Vector Autoregression. The first is an explicit solution to the likelihood and posterior distribution. The second is a parsimonious, time-invariant and invertible state space form. The third is a parallel Gibbs sampler without forward filte...
Saved in:
Published in | IDEAS Working Paper Series from RePEc |
---|---|
Main Author | |
Format | Paper |
Language | English |
Published |
St. Louis
Federal Reserve Bank of St. Louis
01.01.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Three new approaches are proposed to handle mixed frequency Vector Autoregression. The first is an explicit solution to the likelihood and posterior distribution. The second is a parsimonious, time-invariant and invertible state space form. The third is a parallel Gibbs sampler without forward filtering and backward sampling. The three methods are unified since all of them explore the fact that the mixed frequency observations impose linear constraints on the distribution of high frequency latent variables. By a simulation study, different approaches are compared and the parallel Gibbs sampler outperforms others. A financial application on the yield curve forecast is conducted using mixed frequency macro-finance data. |
---|---|
AbstractList | Three new approaches are proposed to handle mixed frequency Vector Autoregression. The first is an explicit solution to the likelihood and posterior distribution. The second is a parsimonious, time-invariant and invertible state space form. The third is a parallel Gibbs sampler without forward filtering and backward sampling. The three methods are unified since all of them explore the fact that the mixed frequency observations impose linear constraints on the distribution of high frequency latent variables. By a simulation study, different approaches are compared and the parallel Gibbs sampler outperforms others. A financial application on the yield curve forecast is conducted using mixed frequency macro-finance data. |
Author | Qian, Hang |
Author_xml | – sequence: 1 givenname: Hang surname: Qian fullname: Qian, Hang |
BookMark | eNrjYmDJy89L5WTQD0tNLskvUnAsBZKp6UWpxcWZ-XkK5ZklGQq-mRWpKQpuRamFpal5yZUKLokliTwMrGmJOcWpvFCam0HZzTXE2UO3oCgfqKy4JD4rv7QoDygVb2hmaWlkBiQsjYlTBQAe1C-O |
ContentType | Paper |
Copyright | Copyright FEDERAL RESERVE BANK OF ST LOUIS 2013 |
Copyright_xml | – notice: Copyright FEDERAL RESERVE BANK OF ST LOUIS 2013 |
DBID | 3V. 7WY 7WZ 7XB 87Z 8FK 8FL AAFGM ABLUL ABPUF ABSSA ABUWG ACIOU ADZZV AFKRA AGAJT AGSBL AJNOY AQTIP AZQEC BENPR BEZIV BOUDT CBHQV CCPQU DWQXO FRNLG F~G K60 K6~ L.- M0C PIMPY PQBIZ PQBZA PQCXX PQEST PQQKQ PQUKI PRINS Q9U |
DatabaseName | ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central Korea - hybrid linking Business Premium Collection - hybrid linking ABI/INFORM Collection (Alumni) - hybrid linking ABI/INFORM Collection - hybrid linking ProQuest Central (Alumni) ABI/INFORM Global - hybrid linking ProQuest Central (Alumni) - hybrid linking ProQuest Central ProQuest Central Essentials - hybrid linking ABI/INFORM Global (Alumni) - hybrid linking Business Premium Collection (Alumni) - hybrid linking ProQuest Women's & Gender Studies - hybrid linking ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Business Premium Collection ProQuest One Business - hybrid linking ProQuest One Business (Alumni) - hybrid linking ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced ABI/INFORM Global (ProQuest) Publicly Available Content Database One Business ProQuest One Business (Alumni) ProQuest Central - hybrid linking ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | Publicly Available Content Database Business Premium Collection ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ABI/INFORM Global ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Business Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest One Business (Alumni) ProQuest One Academic ABI/INFORM Complete (Alumni Edition) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
ExternalDocumentID | 3760316081 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 3V. 7WY 7XB 8FK 8FL ABUWG AFKRA AZQEC BENPR BEZIV CCPQU DWQXO FRNLG K60 K6~ L.- M0C PIMPY PQBIZ PQBZA PQEST PQQKQ PQUKI PRINS Q9U |
ID | FETCH-proquest_journals_16992669993 |
IEDL.DBID | BENPR |
IngestDate | Thu Oct 10 22:20:24 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-proquest_journals_16992669993 |
OpenAccessLink | https://www.proquest.com/docview/1699266999?pq-origsite=%requestingapplication% |
PQID | 1699266999 |
PQPubID | 2036240 |
ParticipantIDs | proquest_journals_1699266999 |
PublicationCentury | 2000 |
PublicationDate | 20130101 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – month: 01 year: 2013 text: 20130101 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | St. Louis |
PublicationPlace_xml | – name: St. Louis |
PublicationTitle | IDEAS Working Paper Series from RePEc |
PublicationYear | 2013 |
Publisher | Federal Reserve Bank of St. Louis |
Publisher_xml | – name: Federal Reserve Bank of St. Louis |
Score | 2.8794804 |
Snippet | Three new approaches are proposed to handle mixed frequency Vector Autoregression. The first is an explicit solution to the likelihood and posterior... |
SourceID | proquest |
SourceType | Aggregation Database |
SubjectTerms | Regression analysis |
Title | Vector Autoregression with Mixed Frequency Data |
URI | https://www.proquest.com/docview/1699266999 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQSUxKNgE2U1N0zc3STHRNTEHXvBgbGeoaJQFrazODRENzC9B-Z18_M49QE68I0wjogFsxdFklrEwEF9Qp-cmgMXJ9QzNLS2BlAmzP2BcU6oJujQLNrkKv0GBmYDUCndzEwsDq5OoXEIRRsIJrCzdBBtaAxILUIiEGptQ8EQb9MPDAuIIj6LSA1HTIutM8BdAAqIJvZkVqioJbEWQ9c6WCS2JJoiiDsptriLOHLszseGh8F8cjXGcsxsAC7LinSjAopBimAutnI-M0E-MUk7RUoKRJIrD7YWppbJloZGxmJskgg88kKfzS0gxcRuCrGUDDATIMLCVFpamywAqyJEkOGgoAzOhvQA |
link.rule.ids | 786,790,21409,33768,43829 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQSUxKNgE2U1N0zc3STHRNTEHXvBgbGeoaJQFrazODRENzC9B-Z18_M49QE68I0wjogFsxdFklrEwEF9Qp-cmgMXJ9QzNLS2BlAmzP2BcU6oJujQLNrkKv0GBmYAVNaAFTNauTq19AEEbBCq4t3AQZWAMSC1KLhBiYUvNEGPTDwAPjCo6g0wJS0yHrTvMUQAOgCr6ZFakpCm5FkPXMlQouiSWJogzKbq4hzh66MLPjofFdHI9wnbEYAwuw454qwaCQYpgKrJ-NjNNMjFNM0lKBkiaJwO6HqaWxZaKRsZmZJIMMPpOk8EvLM3B6hPj6xPt4-nlLM3AZga9pAA0NyDCwlBSVpsoCK8uSJDloiAAALxJyNA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vector+Autoregression+with+Mixed+Frequency+Data&rft.jtitle=IDEAS+Working+Paper+Series+from+RePEc&rft.au=Qian%2C+Hang&rft.date=2013-01-01&rft.pub=Federal+Reserve+Bank+of+St.+Louis&rft.externalDocID=3760316081 |