Towards extreme fast charging of 4.6V LiCoO2 via mitigating high-voltage kinetic hindrance

High-voltage LiCoO2 (LCO) is an attractive cathode for ultra-high energy density lithium-ion batteries (LIBs) in the 3C markets. However, the sluggish lithium-ion diffusion at high voltage significantly hampers its rate capability. Herein, combining experiments with density functional theory (DFT) c...

Full description

Saved in:
Bibliographic Details
Published inJournal of energy chemistry Vol. 78
Main Authors Tang, Yu, Zhao, Jun, Zhu, He, Ren, Jincan, Wang, Wei, Fang, Yongjin, Huang, Zhiyong, Yin, Zijia, Huang, Yalan, Zhang, Binghao, Yang, Tingting, Li, Tianyi, Gallington, Leighanne C., Lan, Si, Ren, Yang, Liu, Qi
Format Journal Article
LanguageEnglish
Published United States Elsevier 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High-voltage LiCoO2 (LCO) is an attractive cathode for ultra-high energy density lithium-ion batteries (LIBs) in the 3C markets. However, the sluggish lithium-ion diffusion at high voltage significantly hampers its rate capability. Herein, combining experiments with density functional theory (DFT) calculations, we demonstrate that the kinetic limitations can be mitigated by a facial Mg2++Gd3+ co-doping method. The as-prepared LCO shows significantly enhanced Li-ion diffusion mobility at high voltage, making more homogenous Li-ion de/intercalation at a high-rate charge/discharge process. The homogeneity enables the structural stability of LCO at a high-rate current density, inhibiting stress accumulation and irreversible phase transition. When used in combination with a Li metal anode, the doped LCO shows an extreme fast charging (XFC) capability, with a superior high capacity of 193.1 mAhg-1 even at the current density of 20C and high-rate capacity retention of 91.3% after 100 cycles at 5C. In conclusion, this work provides a new insight to prepare XFC high-voltage LCO cathode materials.
AbstractList High-voltage LiCoO2 (LCO) is an attractive cathode for ultra-high energy density lithium-ion batteries (LIBs) in the 3C markets. However, the sluggish lithium-ion diffusion at high voltage significantly hampers its rate capability. Herein, combining experiments with density functional theory (DFT) calculations, we demonstrate that the kinetic limitations can be mitigated by a facial Mg2++Gd3+ co-doping method. The as-prepared LCO shows significantly enhanced Li-ion diffusion mobility at high voltage, making more homogenous Li-ion de/intercalation at a high-rate charge/discharge process. The homogeneity enables the structural stability of LCO at a high-rate current density, inhibiting stress accumulation and irreversible phase transition. When used in combination with a Li metal anode, the doped LCO shows an extreme fast charging (XFC) capability, with a superior high capacity of 193.1 mAhg-1 even at the current density of 20C and high-rate capacity retention of 91.3% after 100 cycles at 5C. In conclusion, this work provides a new insight to prepare XFC high-voltage LCO cathode materials.
Author Huang, Yalan
Lan, Si
Ren, Yang
Tang, Yu
Wang, Wei
Li, Tianyi
Fang, Yongjin
Yin, Zijia
Gallington, Leighanne C.
Ren, Jincan
Liu, Qi
Zhang, Binghao
Zhu, He
Zhao, Jun
Huang, Zhiyong
Yang, Tingting
Author_xml – sequence: 1
  fullname: Tang, Yu
  organization: City University of Hong Kong (China)
– sequence: 2
  fullname: Zhao, Jun
  organization: City University of Hong Kong (China)
– sequence: 3
  fullname: Zhu, He
  organization: City University of Hong Kong (China)
– sequence: 4
  fullname: Ren, Jincan
  organization: City University of Hong Kong (China)
– sequence: 5
  fullname: Wang, Wei
  organization: City University of Hong Kong (China)
– sequence: 6
  fullname: Fang, Yongjin
  organization: City University of Hong Kong (China)
– sequence: 7
  fullname: Huang, Zhiyong
  organization: City University of Hong Kong (China)
– sequence: 8
  fullname: Yin, Zijia
  organization: City University of Hong Kong (China)
– sequence: 9
  fullname: Huang, Yalan
  organization: City University of Hong Kong (China)
– sequence: 10
  fullname: Zhang, Binghao
  organization: City University of Hong Kong (China)
– sequence: 11
  fullname: Yang, Tingting
  organization: City University of Hong Kong (China)
– sequence: 12
  fullname: Li, Tianyi
  organization: Argonne National Laboratory (ANL), Argonne, IL (United States)
– sequence: 13
  fullname: Gallington, Leighanne C.
  organization: Argonne National Laboratory (ANL), Argonne, IL (United States)
– sequence: 14
  fullname: Lan, Si
  organization: City University of Hong Kong, Guangdong (China). Shenzhen Research Institute
– sequence: 15
  fullname: Ren, Yang
  organization: City University of Hong Kong (China)
– sequence: 16
  fullname: Liu, Qi
  organization: City University of Hong Kong (China); City University of Hong Kong, Guangdong (China). Shenzhen Research Institute
BackLink https://www.osti.gov/biblio/2202251$$D View this record in Osti.gov
BookMark eNqNisEKgkAURWdhkJX_8Ghv6KSCaylaBG2kRZsYxuf4SmfAeVifn0Ef0N0cOOeuRGCdxUCEMinzOCvzYiki7x_JvDJLZZmH4la7lxobD_jmEQeEVnkG3anRkDXgWsh2xRXOVLmLhIkUDMRkFH9rR6aLJ9ezMghPssikZ2mbUVmNG7FoVe8x-nEttsdDXZ1i55nuXhOj7rSzFjXfpUykzNP9X6cPrtdDdw
ContentType Journal Article
CorporateAuthor Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
CorporateAuthor_xml – name: Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
DBID OTOTI
DatabaseName OSTI.GOV
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 2202251
GroupedDBID --M
.~1
0R~
1~.
4.4
457
4G.
5VR
5VS
7-5
8P~
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABNUV
ABPIF
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CCEZO
CDRFL
CHBEP
EBS
EFJIC
ENUVR
FA0
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
KOM
M41
MO0
O-L
O9-
OAUVE
OTOTI
P-8
P-9
PC.
Q38
ROL
SDF
SPC
SPCBC
SSG
SSR
SSZ
T5K
~G-
ID FETCH-osti_scitechconnect_22022513
ISSN 2095-4956
IngestDate Mon Oct 23 05:15:19 EDT 2023
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-osti_scitechconnect_22022513
Notes ECS Scheme
AC02-06CH11357; 2020YFA0406203; JCYJ20180507181806316; JCYJ20200109105618137; CityU 21307019; CityU7020043; CityU7005500; CityU7005612
Shenzhen Science and Technology Innovation Commission
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities (SUF)
USDOE
National Key Research and Development Program of China
ParticipantIDs osti_scitechconnect_2202251
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of energy chemistry
PublicationYear 2022
Publisher Elsevier
Publisher_xml – name: Elsevier
SSID ssj0000941295
Score 4.661462
Snippet High-voltage LiCoO2 (LCO) is an attractive cathode for ultra-high energy density lithium-ion batteries (LIBs) in the 3C markets. However, the sluggish...
SourceID osti
SourceType Open Access Repository
SubjectTerms fast charging
high-voltage LiCoO2
Li-ion battery
Li-ion diffusion
structural evolution
Title Towards extreme fast charging of 4.6V LiCoO2 via mitigating high-voltage kinetic hindrance
URI https://www.osti.gov/biblio/2202251
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NS8MwFMCD7qQH8RN1KkG8lRSbZXM7ylCGoF6mTC8jSRMcYgtb68GDf7vvNVlbpgz1UkoCoc0vvI_kvRdCzrqKS3shNOvFNmbCCsV6nHeZVQKUVZdbU5RSur3rDB7Ezag9qu4ELbJLMhXqjx_zSv5DFdqAK2bJ_oFsOSg0wDvwhScQhufvGBcxr7MABCxu8wVWzrKgqH3kY5lF2HkEt7uf3vPgfSKDt4krqQG9WKeYgWzKMGjnFWxNrNz6Ah76tFwH321W4zIF9fyWuMrvdyLjKa9tRLsznTypmnKn6MpDHp8YMkm0X6N--4HzhVCOeV5MJbY4GG0M3a66jHXX9CxUtuY4Hqa_r7YijMYMP6Nyewy8TrBEMAC1HA-UZgpir6b-h5tkw88BvXQQtsiKSbbJeq2a4w559jiox0ERB53joKmliIM6HBRw0AoHreOgHgctceyS0-urYX_A8NPGYLVg6V2NMUo6G_sfbO2RRpImZp9QyRUHGz02UgkRayPBwJWKm0jE7dieiwPSXDLQ4dLeJlmrAB2RRjbNzTFYTJk6Keb2C6mfI-I
link.rule.ids 230,315,783,787,888
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+extreme+fast+charging+of+4.6V+LiCoO2+via+mitigating+high-voltage+kinetic+hindrance&rft.jtitle=Journal+of+energy+chemistry&rft.au=Tang%2C+Yu&rft.au=Zhao%2C+Jun&rft.au=Zhu%2C+He&rft.au=Ren%2C+Jincan&rft.date=2022-12-01&rft.pub=Elsevier&rft.issn=2095-4956&rft.volume=78&rft.externalDocID=2202251
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-4956&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-4956&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-4956&client=summon