How the Pattern Recognition Ability of Deep Learning Enhances Housing Price Estimation

Estimating the implicit value of housing assets is a very important task for participants in the housing market. Until now, such estimations were usually carried out using multiple regression analysis based on the inherent characteristics of the estate. However, in this paper, we examine the estimat...

Full description

Saved in:
Bibliographic Details
Published in한국경제지리학회지, 25(1) pp. 183 - 201
Main Authors 김진석, 김경민
Format Journal Article
LanguageEnglish
Published 한국경제지리학회 01.03.2022
Subjects
Online AccessGet full text
ISSN1226-8968
2713-9115
DOI10.23841/egsk.2022.25.1.183

Cover

Abstract Estimating the implicit value of housing assets is a very important task for participants in the housing market. Until now, such estimations were usually carried out using multiple regression analysis based on the inherent characteristics of the estate. However, in this paper, we examine the estimation capabilities of the Artificial Neural Network(ANN) and its ‘Deep Learning’ faculty. To make use of the strength of the neural network model, which allows the recognition of patterns in data by modeling non-linear and complex relationships between variables, this study utilizes geographic coordinates (i.e. longitudinal/latitudinal points) as the locational factor of housing prices. Specifically, we built a dataset including structural and spatiotemporal factors based on the hedonic price model and compared the estimation performance of the models with and without geographic coordinate variables. The results show that high estimation performance can be achieved in ANN by explaining the spatial effect on housing prices through the geographic location. KCI Citation Count: 0
AbstractList Estimating the implicit value of housing assets is a very important task for participants in the housing market. Until now, such estimations were usually carried out using multiple regression analysis based on the inherent characteristics of the estate. However, in this paper, we examine the estimation capabilities of the Artificial Neural Network(ANN) and its ‘Deep Learning’ faculty. To make use of the strength of the neural network model, which allows the recognition of patterns in data by modeling non-linear and complex relationships between variables, this study utilizes geographic coordinates (i.e. longitudinal/latitudinal points) as the locational factor of housing prices. Specifically, we built a dataset including structural and spatiotemporal factors based on the hedonic price model and compared the estimation performance of the models with and without geographic coordinate variables. The results show that high estimation performance can be achieved in ANN by explaining the spatial effect on housing prices through the geographic location. KCI Citation Count: 0
Author 김경민
김진석
Author_xml – sequence: 1
  fullname: 김진석
  organization: (서울대학교)
– sequence: 2
  fullname: 김경민
  organization: (서울대학교)
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002830060$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNqVjsFKw0AURQdpwWj7BW7e1kXGzEzSTpZFIxFclFLcDtPwkj5S30hmRPx7ifgDrg5czoVzIxYcGIW4U4XUxpbqAYc4Sl1oLXUllVTWXIlMb5XJa6WqhciU1pvc1ht7LdYx0qkoy62xujSZeGvDF6Qzwt6nhBPDAbswMCUKDLsTXSh9Q-jhCfEDXtFPTDxAw2fPHUZow2ech_1EHUITE737-boSy95fIq7_eCvun5vjY5vz1LuxIxc8_XIIbpzc7nB8cXVdFXP1f9wfpzhPIQ
ContentType Journal Article
DBID ACYCR
DOI 10.23841/egsk.2022.25.1.183
DatabaseName Korean Citation Index
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2713-9115
EndPage 201
ExternalDocumentID oai_kci_go_kr_ARTI_9950271
GroupedDBID ACYCR
ALMA_UNASSIGNED_HOLDINGS
M~E
ID FETCH-nrf_kci_oai_kci_go_kr_ARTI_99502713
ISSN 1226-8968
IngestDate Tue Nov 21 21:42:47 EST 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel OpenURL
MergedId FETCHMERGED-nrf_kci_oai_kci_go_kr_ARTI_99502713
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9950271
PublicationCentury 2000
PublicationDate 2022-03
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03
PublicationDecade 2020
PublicationTitle 한국경제지리학회지, 25(1)
PublicationYear 2022
Publisher 한국경제지리학회
Publisher_xml – name: 한국경제지리학회
SSID ssib044738243
ssib009283360
ssib001151505
Score 3.577624
Snippet Estimating the implicit value of housing assets is a very important task for participants in the housing market. Until now, such estimations were usually...
SourceID nrf
SourceType Open Website
StartPage 183
SubjectTerms 지리학
Title How the Pattern Recognition Ability of Deep Learning Enhances Housing Price Estimation
URI https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002830060
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 한국경제지리학회지, 2022, 25(1), , pp.183-201
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT8IwFG8IXrwYjRq_0xh7MITJRvfR44AZNdF4UOONjNGhIQ6DcPHgv-y_4OtbBxUxovHSvJSu6_b70b7Xvb5HyJFa01PP9atJAlMg7wIWcZKCqcKTOJBOEHgd9UX38so7u-UX9-59qfRueC2NRx0reZ17ruQvqEId4KpOyf4C2UmnUAEy4AslIAzlQhhjPjjA-RqDZKq9eO0NBJCG6PWK389bUj4XgVR7lSh7UEgrB5kxbhRg5vdKBP_1pylMWl9lUYsJl4kmi0LWcFnYQsFhDRCaLKzhTyD4ymUiarDQY2GzuEqgELLAaAOQqlRIgW3sQWCfAnvIm3ElQClac5pM7g93O2U6NbfeuACbd-K5hVT7rwcwJm9QJauByNP0WBLrHDDC1YTuGpO0nafO0eu9k49pdikBVYartUT2XvqWGr7luJZtTa41A3fPLKifQnf3k8d2b9DuD9tgoJy3hXBrjop5sOT4PvoVXL5FU_1VqZfGBCxA-TPiuXHu1wMnPzRSPGseSQtHe_J1rKAxZcPU0JhuVsmKNnVomPN2jZRktk7ugLMUOEs1Z6nBWao5SwcpVZylBWdpwVmqOUuRs3TK2Q1yfBrdNM-qMA58Gd-_lPomKWeDTG4RansidoUtu6mMuUhEnIJh0eFeWvdkvZba2-Tw5_52Fmm0S5an5Nwj5dFwLPdBzxx1DhCbD53_Y-4
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+the+Pattern+Recognition+Ability+of+Deep+Learning+Enhances+Housing+Price+Estimation&rft.jtitle=%ED%95%9C%EA%B5%AD%EA%B2%BD%EC%A0%9C%EC%A7%80%EB%A6%AC%ED%95%99%ED%9A%8C%EC%A7%80%2C+25%281%29&rft.au=%EA%B9%80%EC%A7%84%EC%84%9D&rft.au=%EA%B9%80%EA%B2%BD%EB%AF%BC&rft.date=2022-03-01&rft.pub=%ED%95%9C%EA%B5%AD%EA%B2%BD%EC%A0%9C%EC%A7%80%EB%A6%AC%ED%95%99%ED%9A%8C&rft.issn=1226-8968&rft.eissn=2713-9115&rft.spage=183&rft.epage=201&rft_id=info:doi/10.23841%2Fegsk.2022.25.1.183&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_9950271
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-8968&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-8968&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-8968&client=summon