Addition of nanoparticle dispersions to enhance flux pinning of the YBa 2 Cu 3 O 7- x superconductor

Following the discovery of type-II high-temperature superconductors in 1986 (refs 1, 2), work has proceeded to develop these materials for power applications. One of the problems, however, has been that magnetic flux is not completely expelled, but rather is contained within magnetic fluxons, whose...

Full description

Saved in:
Bibliographic Details
Published inNature Vol. 430; no. 7002; pp. 867 - 870
Main Authors Haugan, T, Barnes, P. N, Wheeler, R, Meisenkothen, F, Sumption, M
Format Journal Article
LanguageEnglish
Published 19.08.2004
Online AccessGet full text

Cover

Loading…
More Information
Summary:Following the discovery of type-II high-temperature superconductors in 1986 (refs 1, 2), work has proceeded to develop these materials for power applications. One of the problems, however, has been that magnetic flux is not completely expelled, but rather is contained within magnetic fluxons, whose motion prevents larger supercurrents. It is known that the critical current of these materials can be enhanced by incorporating a high density of extended defects to act as pinning centres for the fluxons. YBa2Cu3O7 (YBCO or 123) is the most promising material for such applications at higher temperatures (liquid nitrogen). Pinning is optimized when the size of the defects approaches the superconducting coherence length (∼ 2-4 nm for YBCO at temperatures ≤77 K) and when the areal number density of defects is of the order of (H/2) × 1011 cm-2, where H is the applied magnetic field in tesla. Such a high density has been difficult to achieve by material-processing methods that maintain a nanosize defect, except through irradiation. Here we report a method for achieving a dispersion of ∼8-nm-sized nanoparticles in YBCO with a high number density, which increases the critical current (at 77 K) by a factor of two to three for high magnetic fields.
ISSN:0028-0836
DOI:10.1038/nature02792