Prediction of critical heat flux for narrow rectangular channels in a steady state condition using machine learning

The subchannel of a research reactor used to generate high power density is designed to be narrow and rectangular and comprises plate-type fuels operating under downward flow conditions. Critical heat flux (CHF) is a crucial parameter for estimating the safety of a nuclear fuel; hence, this paramete...

Full description

Saved in:
Bibliographic Details
Published inNuclear engineering and technology Vol. 53; no. 6; pp. 1796 - 1809
Main Authors Kim, Huiyung, Moon, Jeongmin, Hong, Dongjin, Cha, Euiyoung, Yun, Byongjo
Format Journal Article
LanguageKorean
Published 2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The subchannel of a research reactor used to generate high power density is designed to be narrow and rectangular and comprises plate-type fuels operating under downward flow conditions. Critical heat flux (CHF) is a crucial parameter for estimating the safety of a nuclear fuel; hence, this parameter should be accurately predicted. Here, machine learning is applied for the prediction of CHF in a narrow rectangular channel. Although machine learning can effectively analyze large amounts of complex data, its application to CHF, particularly for narrow rectangular channels, remains challenging because of the limited flow conditions available in existing experimental databases. To resolve this problem, we used four CHF correlations to generate pseudo-data for training an artificial neural network. We also propose a network architecture that includes pre-training and prediction stages to predict and analyze the CHF. The trained neural network predicted the CHF with an average error of 3.65% and a root-mean-square error of 17.17% for the test pseudo-data; the respective errors of 0.9% and 26.4% for the experimental data were not considered during training. Finally, machine learning was applied to quantitatively investigate the parametric effect on the CHF in narrow rectangular channels under downward flow conditions.
AbstractList The subchannel of a research reactor used to generate high power density is designed to be narrow and rectangular and comprises plate-type fuels operating under downward flow conditions. Critical heat flux (CHF) is a crucial parameter for estimating the safety of a nuclear fuel; hence, this parameter should be accurately predicted. Here, machine learning is applied for the prediction of CHF in a narrow rectangular channel. Although machine learning can effectively analyze large amounts of complex data, its application to CHF, particularly for narrow rectangular channels, remains challenging because of the limited flow conditions available in existing experimental databases. To resolve this problem, we used four CHF correlations to generate pseudo-data for training an artificial neural network. We also propose a network architecture that includes pre-training and prediction stages to predict and analyze the CHF. The trained neural network predicted the CHF with an average error of 3.65% and a root-mean-square error of 17.17% for the test pseudo-data; the respective errors of 0.9% and 26.4% for the experimental data were not considered during training. Finally, machine learning was applied to quantitatively investigate the parametric effect on the CHF in narrow rectangular channels under downward flow conditions.
Author Kim, Huiyung
Cha, Euiyoung
Yun, Byongjo
Moon, Jeongmin
Hong, Dongjin
Author_xml – sequence: 1
  fullname: Kim, Huiyung
– sequence: 2
  fullname: Moon, Jeongmin
– sequence: 3
  fullname: Hong, Dongjin
– sequence: 4
  fullname: Cha, Euiyoung
– sequence: 5
  fullname: Yun, Byongjo
BookMark eNqNjMFKxDAQQIOsYNX9h7l4LDRJs1uPIorowT148LaM6XQ7GCeQSVH_3kX8AE8PHo93blaShU5M45zvWx-G15Vp7NYPbdh6f2bWqvzW9c7aLgy2MborNHKsnAXyBLFw5YgJZsIKU1q-YMoFBEvJn1AoVpTDkrBAnFGEkgILIGglHL-PwEoQs4z8e1yU5QAfGGcWgkRY5CguzemESWn9xwtzdX_3cvvQvrNW3suoaf948_TsOmdd3wc3XHdhs_H_7X4AyABOmQ
ContentType Journal Article
DBID JDI
DEWEY 621.48
DatabaseName KoreaScience
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Prediction of critical heat flux for narrow rectangular channels in a steady state condition using machine learning
EISSN 2234-358X
EndPage 1809
ExternalDocumentID JAKO202124452890566
GroupedDBID .UV
0R~
0SF
123
4.4
457
5VS
6I.
9ZL
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ACYCR
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
IPNFZ
JDI
KQ8
KVFHK
M41
NCXOZ
O9-
OK1
RIG
ROL
SSZ
ID FETCH-kisti_ndsl_JAKO2021244528905663
ISSN 1738-5733
IngestDate Fri Dec 22 12:02:25 EST 2023
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Downward flow
Machine learning
Narrow rectangular channel
Neural network
Critical heat flux
Language Korean
LinkModel OpenURL
MergedId FETCHMERGED-kisti_ndsl_JAKO2021244528905663
Notes KISTI1.1003/JNL.JAKO202124452890566
OpenAccessLink http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202124452890566&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
ParticipantIDs kisti_ndsl_JAKO202124452890566
PublicationCentury 2000
PublicationDate 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationTitle Nuclear engineering and technology
PublicationTitleAlternate Nuclear engineering and technology : an international journal of the Korean Nuclear Society
PublicationYear 2021
SSID ssib042110581
ssib044754754
ssib053376769
ssj0064470
ssib003997358
ssib005608963
Score 4.4134383
Snippet The subchannel of a research reactor used to generate high power density is designed to be narrow and rectangular and comprises plate-type fuels operating...
SourceID kisti
SourceType Open Access Repository
StartPage 1796
Title Prediction of critical heat flux for narrow rectangular channels in a steady state condition using machine learning
URI http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202124452890566&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KT3oQn_gsc9BTiESzadpjqZVSsXqo4E2adFOqNQFtxHrwtzuzj2TR4gtKmi5lSDsfM9_OfjvL2GGQJJgEGrE79Ebc5aGPd9xL3CiIm8hOSVNFE8XLfr17w3u3wW2l8mKplvJZdBy_LdxX8h-v4hj6lXbJ_sGzhVEcwHv0L17Rw3j9lY-vn2iZxXC-2JxaQPHVSab5q9QQprLNokORjWqTpDql3b4pJkUqdgwd6ee5I7cWkQp9JFVcTi6rCI9SbCnM6RJjm8z2qRcymhNlT0MlyPxSrtdnNnfzyTzXNqTQVy3590SWjh8nBUy7WiZ8hu_35XBbrU110EhmrOh6hdr-rINriMGV-i-q3CPHkJ1w1w_k8cJFRFbtgzXy7PCK0aNupWrqPVbmMbN2_ym9FaLDXuviih4ICU1Ay6tIZKnpAUY1Uny-d8ow12yGvrVYjKSw0Sy7lHGaM1td46hlIr3MZyTQIQmHDSFAxhmqfbn65-M8iCYHE4vIDFbZip6BQEvBaY1VHrJ1tmz1pdxgzyWwIEvAAAsIWEDAAgQWKGCBBSwwwIJJCkNQwAIJLCiABRJYoIEFBlib7Oi8M2h3XfnQd-noeXq34L_0t1g1zVKxzSBuNOLT6EQIT3h8yEWEtL0eJyKI6Kg07u2w2ve2dn_6wh5bohFVC9tn1dlTLg6QHc6imvTlB-fPaBc
link.rule.ids 230,315,783,787,888,4031
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+critical+heat+flux+for+narrow+rectangular+channels+in+a+steady+state+condition+using+machine+learning&rft.jtitle=Nuclear+engineering+and+technology&rft.au=Kim%2C+Huiyung&rft.au=Moon%2C+Jeongmin&rft.au=Hong%2C+Dongjin&rft.au=Cha%2C+Euiyoung&rft.date=2021&rft.issn=1738-5733&rft.eissn=2234-358X&rft.volume=53&rft.issue=6&rft.spage=1796&rft.epage=1809&rft.externalDBID=n%2Fa&rft.externalDocID=JAKO202124452890566
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-5733&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-5733&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-5733&client=summon